\(^{2018}\) + ( 2y-1 )\(^{2004}\) 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2019

Vì \(\left(x-2\right)^{2018}\ge0vs\forall x\) và \(\left(2y-1\right)^{2004}\ge0vs\forall y\)

\(\Rightarrow\left(x-2\right)^{2018}+\left(2y-1\right)^{2004}\ge0\)

Mà \(\left(x-2\right)^{2018}+\left(2y-1\right)^{2004}\le0\)     ( theo bài ra )

Suy ra : \(\left(x-2\right)^{2018}+\left(2y-1\right)^{2004}=0\)

\(\Rightarrow\hept{\begin{cases}\left(x-2\right)^{2018}=0\\\left(2y-1\right)^{2004}=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x-2=0\\2y-1=0\end{cases}}\)      \(\Rightarrow\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}\)

Vậy \(x=2;y=\frac{1}{2}\)

2 tháng 2 2019

Nhác quá mấy bài này hỏi làm j

15 tháng 8 2017

a) Ta có:

\(\left|x-2017\right|\ge0\) với \(\forall x\)

\(\left|y-2018\right|\ge0\) với \(\forall x\)

\(\Rightarrow\left|x-2017\right|+\left|y-2018\right|\ge0\) với \(\forall x\)

\(\Rightarrow\) Không có giá trị của x; y thỏa mãn yêu cầu

Vậy \(x;y\in\varnothing\)

b) Ta có:

\(3.\left|x-y\right|^5\ge0\)

\(10.\left|y+\dfrac{2}{3}\right|^7\ge0\)

\(3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7\ge0\left(1\right)\)

Theo bài ra ta có: \(3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7\le0\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7=0\)

\(\Rightarrow\left\{{}\begin{matrix}3.\left|x-y\right|^5=0\\10.\left|y+\dfrac{2}{3}\right|^7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x-y\right|^5=0\\\left|y+\dfrac{2}{3}\right|^7=0\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x-y=0\\y+\dfrac{2}{3}=0\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x=y\\y=\dfrac{-2}{3}\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x=\dfrac{-2}{3}\\y=\dfrac{-2}{3}\end{matrix}\right.\)\(\)

14 tháng 10 2018

\(x^2+\left(y-\dfrac{1}{10}\right)^{2018}=0\\ \Leftrightarrow x^2+\left[\left(y-\dfrac{1}{10}\right)^{1009}\right]^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=0\\\left(y-\dfrac{1}{10}\right)^{1009}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)

26 tháng 12 2018

Bài 1 :

Vì \(\sqrt{3x+2y+z}\ge0\forall x;y;z\)

\(\left|y-\frac{1}{2}\right|\ge0\forall y\)

\(\left(z-2\right)^2\ge0\forall z\)

\(\Rightarrow A\ge2018\forall x;y;z\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3x+2y+z=0\\y-\frac{1}{2}=0\\z-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x+2\cdot\frac{1}{2}+2=0\\y=\frac{1}{2}\\z=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=\frac{1}{2}\\z=2\end{cases}}}\)

Vậy........

26 tháng 12 2018

Bài 2 :

Lý luận tương tự câu 1) ta có :

\(\hept{\begin{cases}x-1=0\\y+1=0\\x+y+z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\\1-1+z=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=-1\\z=0\end{cases}}}\)

Thay x; y; z vào P ta có :

\(P=1^{2018}+\left(-1\right)^{2019}+0^{2020}\)

\(P=1-1+0\)

\(P=0\)

9 tháng 10 2016

a.  x=1      y= -3

b.  x=5      y=7/2

c.  x= -1    y= -1/2

d.  x=1/4   y= 1/4

16 tháng 10 2016

a) x = 1    

y = -3

b) x = 5

y = 7/2

c) x = -1

y = -1/2

d) x = 1/4 

y = 1/4

nha bn

9 tháng 6 2017

Ta có : |3x - 4| + |3y + 5| = 0 

Mà : \(\left|3x-4\right|\le0\forall x\in R\)

         \(\left|3y+5\right|\ge0\forall x\in R\)

Nên |3x - 4| = |3y + 5| = 0 

Suy ra : 3x - 4 = 0 ; 3y + 5 = 0

    =>     3x = 4 ; 3y = -5

    => x = 4/3 ; y = -5/3

23 tháng 12 2018

Chị giải hộ cho e bài toán của em dc khmột chút thôinhe

23 tháng 12 2018

câu hỏi j ạ

19 tháng 3 2018

e, \(x^7-80x^6+80x^5-80x^4+80x^3-80x^2+80x+15\)

đặt 80=x+1 ta đc

\(x^7-\left(x+1\right)x^6+\left(x+1\right)x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x+15=x^7-x^7-x^6+x^6+x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x+15=x+15=79+15=94\)

11 tháng 10 2018

a) Ta có: \(\hept{\begin{cases}\left|y-1\right|\ge0\forall y\\\left|5-x\right|\ge0\forall x\end{cases}\Rightarrow\left|y-1\right|+\left|5-x\right|\ge0\forall}x;y\)

Mà \(\left|y-1\right|+\left|5-x\right|=0\)

\(\Rightarrow\hept{\begin{cases}\left|y-1\right|=0\\\left|5-x\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}y-1=0\\5-x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=5\end{cases}}}\)

Vậy \(\hept{\begin{cases}y=1\\x=5\end{cases}}\)

b)  Ta có: \(\left|y-6\right|\ge0\forall y\)

\(\Rightarrow\left|y-6\right|>0\Leftrightarrow y\ne6\)

\(\Rightarrow\)Để \(\frac{\left|y-6\right|}{x+2}>0\)thì \(\hept{\begin{cases}y\ne6\\x+2>0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}y\ne6\\x>-2\end{cases}}\)

Vậy \(\hept{\begin{cases}y\ne6\\x>-2\end{cases}}\)

c) Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2>0\Leftrightarrow x\ne0\)

Để \(\frac{x^2-1}{x^2}>0\Leftrightarrow\hept{\begin{cases}x^2-1>0\\x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x>1\\x\ne0\end{cases}\Leftrightarrow}x>1}\)

Vậy \(x>1\)

Tham khảo nhé~