
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{-24}{8}=-3\)
\(\frac{x}{3}=-3\Rightarrow x=\left(-3\right).3=-9\)
\(\frac{y}{5}=-3\Rightarrow y=\left(-3\right).5=-15\)
b) \(\frac{x}{5}=\frac{y}{8}=\frac{x-y}{5-8}=\frac{15}{-3}=-5\)
\(\frac{x}{5}=-5\Rightarrow x=\left(-5\right).5=-25\)
\(\frac{y}{8}=-5\Rightarrow y=\left(-5\right).8=-40\)
c) 7x=4y <=> x/4=y/7
\(\frac{x}{4}=\frac{y}{7}=\frac{x+y}{4+7}=\frac{12}{11}\)
\(\frac{x}{4}=\frac{12}{11}\Rightarrow x=\frac{12}{11}.4=\frac{48}{11}\)
\(\frac{y}{7}=\frac{12}{11}\Rightarrow y=\frac{12}{11}.7=\frac{84}{11}\)
d) tt câu c
e) x/5=y/8;z/3=y/12 <=> x/60=y/96=z/24
\(\frac{x}{60}=\frac{y}{96}=\frac{z}{24}=\frac{4x}{4.60}=\frac{2y}{2.96}=\frac{z}{24}=\frac{2y+z-4x}{192+24-240}=\frac{30}{-24}=\frac{-5}{4}\)
\(\frac{x}{60}=\frac{-5}{4}\) => x=-5/4.60=-75
y/96=-5/4 => y=-5/4.96=-120
z/24=-5/4 => z=-5/4.24=-30

1) a) => \(\frac{x}{2}=\frac{y}{5}vàx+y=21\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)
* \(\frac{x}{2}=3\Rightarrow x=2\cdot3=6\)
* \(\frac{y}{5}=3\Rightarrow y=3\cdot5=15\)
c) =.> \(\frac{x}{7}=\frac{y}{5}vày-x=12\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{12}{-2}=-6\)
*\(\frac{x}{7}=-6\Rightarrow x=-6\cdot7=-42\)
*\(\frac{y}{5}=-6\Rightarrow y=-6\cdot5=-30\)

\(x:y:z=3:4:5\)
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(5z^2-3x^2-2y^2\)
Áp dụng tính chất của dãy tỉ số bằng nhau :
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{5z^2-3x^2-2y^2}{5.5^2-3.3^2-2.4^2}=\frac{594}{66}=9\)
\(\Leftrightarrow\frac{x}{3}=9\Rightarrow x=9.3=27\)
\(\Leftrightarrow\frac{y}{4}=9\Rightarrow y=9.4=36\)
\(\Leftrightarrow\frac{z}{5}=9\Rightarrow z=9.5=45\)
Vậy x = 27 ; y = 36 ; z = 45
\(x+y=3\left(x-y\right)\)
\(\Rightarrow x+y=3x-3y\)
\(\Rightarrow y+3y=3x-x\)
\(\Rightarrow4y=2x\)
\(\Rightarrow2y=x\)
\(\Rightarrow x:y=2\)
\(\Rightarrow x+y=2y+y=2\)
\(\Rightarrow3y=2\)
\(\Rightarrow y=\frac{2}{3}\)
\(\Rightarrow x=\frac{4}{3}\)
Vậy \(x=\frac{4}{3};y=\frac{2}{3}\)

a)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=> x2=4.9=36 => x=\(\pm6\)
y2=4.16=64 => y\(\pm8\)
Vì \(\frac{x^2}{9}=\frac{y^2}{16}\) nên x và y cùng dấu
Vậy (x;y) thõ mãn là (6;8);(-6;-8)
b)
Theo bài ra ta có: 3x=2y => \(\frac{x}{2}=\frac{y}{3}\) =>\(\frac{x}{10}=\frac{y}{15}\) (1)
2y=5z => \(\frac{y}{5}=\frac{z}{2}\Rightarrow\frac{y}{15}=\frac{z}{6}\) (2)
Từ (1) và (2) => \(\frac{x}{10}=\frac{y}{15}=\frac{z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{6}=\frac{x+y+z}{10+15+6}=\frac{-62}{31}=-2\)
=> x=(-2).10=-20
y=(-2).15=-30
z=(-2).6=-12
Vậy x=-20; y=-30; z=-12

Ta có: \(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x}{12}=\frac{y}{20}\); \(\frac{y}{4}=\frac{x}{7}\Rightarrow\frac{x}{35}=\frac{y}{20}\)
=> \(\frac{x}{12}=\frac{y}{20}=\frac{z}{35}\)
Áp dụng t/c dãy tỉ số bằng nhau. ta có:
\(\frac{x}{12}=\frac{y}{20}=\frac{z}{35}=\frac{3x}{36}=\frac{2y}{40}=\frac{z}{35}=\frac{3x-2y+z}{36-40+35}=\frac{93}{31}=3\)
\(\Rightarrow\begin{cases}\frac{x}{12}=3\\\frac{y}{20}=3\\\frac{z}{35}=3\end{cases}\Rightarrow\begin{cases}x=36\\y=60\\z=105\end{cases}}\)
\(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x}{12}=\frac{y}{20}\)(*)
\(\frac{y}{4}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{35}\)(**)
Từ (*) và (**) ta có:
\(\frac{x}{12}=\frac{y}{20}=\frac{z}{35}\)
hay \(\frac{3x}{36}=\frac{2y}{40}=\frac{z}{35}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{3x}{36}=\frac{2y}{40}=\frac{z}{35}=\frac{3x-2y+z}{36-40+35}=\frac{93}{31}=3\)
\(\Rightarrow\begin{cases}x=3.36:3=36\\y=3.40:2=60\\z=3.35=105\end{cases}\)
Vậy x=36;y=60 và z=105

\(a,\frac{2x}{3}=\frac{2y}{4}=\frac{4z}{5}\)và x + y + z = 49
Ta có : \(\frac{2x}{3}=\frac{2y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{2}}=\frac{z}{\frac{5}{4}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{2}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{2}+\frac{5}{4}}=\frac{49}{\frac{19}{4}}=49\cdot\frac{4}{19}=\frac{196}{19}\)
Vậy : \(\hept{\begin{cases}\frac{x}{\frac{3}{2}}=\frac{196}{19}\\\frac{y}{\frac{4}{2}}=\frac{196}{19}\\\frac{z}{\frac{5}{4}}=\frac{169}{14}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{294}{19}\\y=\frac{392}{19}\\z=\frac{245}{19}\end{cases}}\)
\(b,\frac{x}{y}=\frac{3}{4};\frac{y}{z}=\frac{5}{7}\)và 2x + 3y - z = 186
Ta có : \(\frac{x}{y}=\frac{3}{4};\frac{y}{z}=\frac{5}{7}\Leftrightarrow\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)
\(\Leftrightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\)
\(\Leftrightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
\(\Leftrightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)
Vậy : \(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}\)

Bài 1:
a) Cách 1: ta có: \(\frac{x}{y}=\frac{3}{5}\Rightarrow\frac{x}{3}=\frac{y}{5}\)
ADTCDTSBN
có: \(\frac{x}{3}=\frac{y}{5}=\frac{x-y}{3-5}=\frac{-6}{-2}=3\)
=> x/3 = 3 => x = 9
y/5 = 3 => y = 15
KL:....
Cách 2:
ta có: \(\frac{x}{y}=\frac{3}{5}\Rightarrow\frac{x}{3}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=3k\\y=5k\end{cases}}\)
mà x -y = -6 => 3k - 5k = -6 => -2k = 6 => k = 3
=> x = 3k =>...
...
b) ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{2y}{6}\)
ADTCDTSBN
có: \(\frac{x}{2}=\frac{2y}{6}=\frac{z}{5}=\frac{x+2y+z}{2+6+5}=\frac{26}{13}=2\)
=> x/2 = 2 => x = 4
y/3 = 2 => y = 6
z/5 = 2 => z = 10
KL:...
cách 2 bn cx lm như cách kia nha
a,C1: \(\frac{x}{y}=\frac{3}{5}\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{x-y}{3-5}=\frac{-6}{-2}=3\)
=>x=9,y=15
C2: Đặt x/3=y/5=k => x=3k,y=5k
Ta có: x - y = 3k - 5k = -2k = -6 =>k=3
=>x=9,y=15
b, tương tự a
2/
C1: \(\frac{3x-5}{4}=\frac{x-2}{3}\Rightarrow3\left(3x-5\right)=4\left(x-2\right)\Rightarrow9x-15=4x-8\Rightarrow5x=7\Rightarrow x=\frac{7}{5}\)
C2: \(\frac{3x-5}{4}=\frac{x-2}{3}\Rightarrow3x-5=\frac{x-2}{3}\cdot4\Rightarrow3x-5=\frac{4x-8}{3}\Rightarrow9x-15=4x-8\Rightarrow5x=7\Rightarrow x=\frac{7}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{9}=\frac{3x}{3.5}=\frac{2y}{2.9}=\frac{3x-2y}{15-18}=\frac{12}{-3}=-4\)
\(\frac{x}{5}=-4\Rightarrow x=\left(-4\right).5=-20\)
\(\frac{y}{9}=-4\Rightarrow y=\left(-4\right).9=-36\)
Vậy x=-20 và y=-36
\(\frac{x}{5}=\frac{y}{9}\Leftrightarrow\frac{3x}{15}=\frac{2y}{18}=\frac{3x-2y}{15-18}=\frac{12}{-3}=-4\)
\(\Rightarrow x=-20,y=-36\)