\(\frac{x}{5}=\frac{y}{9}\)và 3x - 2y = 12

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{5}=\frac{y}{9}=\frac{3x}{3.5}=\frac{2y}{2.9}=\frac{3x-2y}{15-18}=\frac{12}{-3}=-4\)

\(\frac{x}{5}=-4\Rightarrow x=\left(-4\right).5=-20\)

\(\frac{y}{9}=-4\Rightarrow y=\left(-4\right).9=-36\)

Vậy x=-20 và y=-36

10 tháng 12 2017

\(\frac{x}{5}=\frac{y}{9}\Leftrightarrow\frac{3x}{15}=\frac{2y}{18}=\frac{3x-2y}{15-18}=\frac{12}{-3}=-4\)

\(\Rightarrow x=-20,y=-36\)

14 tháng 3 2024

20 tháng 12 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{-24}{8}=-3\)

\(\frac{x}{3}=-3\Rightarrow x=\left(-3\right).3=-9\)

\(\frac{y}{5}=-3\Rightarrow y=\left(-3\right).5=-15\)

b) \(\frac{x}{5}=\frac{y}{8}=\frac{x-y}{5-8}=\frac{15}{-3}=-5\)

\(\frac{x}{5}=-5\Rightarrow x=\left(-5\right).5=-25\)

\(\frac{y}{8}=-5\Rightarrow y=\left(-5\right).8=-40\)

c) 7x=4y <=> x/4=y/7

\(\frac{x}{4}=\frac{y}{7}=\frac{x+y}{4+7}=\frac{12}{11}\)

\(\frac{x}{4}=\frac{12}{11}\Rightarrow x=\frac{12}{11}.4=\frac{48}{11}\)

\(\frac{y}{7}=\frac{12}{11}\Rightarrow y=\frac{12}{11}.7=\frac{84}{11}\)

d) tt câu c

e) x/5=y/8;z/3=y/12 <=> x/60=y/96=z/24

\(\frac{x}{60}=\frac{y}{96}=\frac{z}{24}=\frac{4x}{4.60}=\frac{2y}{2.96}=\frac{z}{24}=\frac{2y+z-4x}{192+24-240}=\frac{30}{-24}=\frac{-5}{4}\)

\(\frac{x}{60}=\frac{-5}{4}\) => x=-5/4.60=-75

y/96=-5/4 => y=-5/4.96=-120

z/24=-5/4 => z=-5/4.24=-30

29 tháng 10 2017

a) x/5=y/2

= x+y/5+2=21/7=3

=> x/5=3=>x=15

    y/2=3=>x=6

29 tháng 10 2017

1) a) => \(\frac{x}{2}=\frac{y}{5}vàx+y=21\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)

\(\frac{x}{2}=3\Rightarrow x=2\cdot3=6\)

\(\frac{y}{5}=3\Rightarrow y=3\cdot5=15\)

c) =.> \(\frac{x}{7}=\frac{y}{5}vày-x=12\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{12}{-2}=-6\)

*\(\frac{x}{7}=-6\Rightarrow x=-6\cdot7=-42\)

*\(\frac{y}{5}=-6\Rightarrow y=-6\cdot5=-30\)

21 tháng 7 2016

\(x:y:z=3:4:5\)

\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(5z^2-3x^2-2y^2\)

Áp dụng tính chất của dãy tỉ số bằng nhau :

\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{5z^2-3x^2-2y^2}{5.5^2-3.3^2-2.4^2}=\frac{594}{66}=9\)

\(\Leftrightarrow\frac{x}{3}=9\Rightarrow x=9.3=27\)

\(\Leftrightarrow\frac{y}{4}=9\Rightarrow y=9.4=36\)

\(\Leftrightarrow\frac{z}{5}=9\Rightarrow z=9.5=45\)

Vậy x = 27 ; y = 36 ; z = 45

21 tháng 7 2016

\(x+y=3\left(x-y\right)\)

\(\Rightarrow x+y=3x-3y\)

\(\Rightarrow y+3y=3x-x\)

\(\Rightarrow4y=2x\)

\(\Rightarrow2y=x\)

\(\Rightarrow x:y=2\)

\(\Rightarrow x+y=2y+y=2\)

\(\Rightarrow3y=2\)

\(\Rightarrow y=\frac{2}{3}\)

\(\Rightarrow x=\frac{4}{3}\)

Vậy \(x=\frac{4}{3};y=\frac{2}{3}\)

1 tháng 12 2016

a)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

=> x2=4.9=36 => x=\(\pm6\)

y2=4.16=64 => y\(\pm8\)

\(\frac{x^2}{9}=\frac{y^2}{16}\) nên x và y cùng dấu

Vậy (x;y) thõ mãn là (6;8);(-6;-8)

b)

Theo bài ra ta có: 3x=2y => \(\frac{x}{2}=\frac{y}{3}\) =>\(\frac{x}{10}=\frac{y}{15}\) (1)

2y=5z => \(\frac{y}{5}=\frac{z}{2}\Rightarrow\frac{y}{15}=\frac{z}{6}\) (2)

Từ (1) và (2) => \(\frac{x}{10}=\frac{y}{15}=\frac{z}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{6}=\frac{x+y+z}{10+15+6}=\frac{-62}{31}=-2\)

=> x=(-2).10=-20

y=(-2).15=-30

z=(-2).6=-12

Vậy x=-20; y=-30; z=-12

1 tháng 12 2016

kia 2 câu a,b à hay là 1 câu thế

 

28 tháng 9 2016

Ta có: \(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x}{12}=\frac{y}{20}\)\(\frac{y}{4}=\frac{x}{7}\Rightarrow\frac{x}{35}=\frac{y}{20}\)

=> \(\frac{x}{12}=\frac{y}{20}=\frac{z}{35}\)

Áp dụng t/c dãy tỉ số bằng nhau. ta có:

\(\frac{x}{12}=\frac{y}{20}=\frac{z}{35}=\frac{3x}{36}=\frac{2y}{40}=\frac{z}{35}=\frac{3x-2y+z}{36-40+35}=\frac{93}{31}=3\)

\(\Rightarrow\begin{cases}\frac{x}{12}=3\\\frac{y}{20}=3\\\frac{z}{35}=3\end{cases}\Rightarrow\begin{cases}x=36\\y=60\\z=105\end{cases}}\)

28 tháng 9 2016

\(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x}{12}=\frac{y}{20}\)(*)

\(\frac{y}{4}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{35}\)(**)

Từ (*) và (**) ta có:

\(\frac{x}{12}=\frac{y}{20}=\frac{z}{35}\)

hay \(\frac{3x}{36}=\frac{2y}{40}=\frac{z}{35}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{3x}{36}=\frac{2y}{40}=\frac{z}{35}=\frac{3x-2y+z}{36-40+35}=\frac{93}{31}=3\)

\(\Rightarrow\begin{cases}x=3.36:3=36\\y=3.40:2=60\\z=3.35=105\end{cases}\)

Vậy x=36;y=60 và z=105

14 tháng 7 2019

\(a,\frac{2x}{3}=\frac{2y}{4}=\frac{4z}{5}\)và x + y + z = 49

Ta có : \(\frac{2x}{3}=\frac{2y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{2}}=\frac{z}{\frac{5}{4}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{2}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{2}+\frac{5}{4}}=\frac{49}{\frac{19}{4}}=49\cdot\frac{4}{19}=\frac{196}{19}\)

Vậy : \(\hept{\begin{cases}\frac{x}{\frac{3}{2}}=\frac{196}{19}\\\frac{y}{\frac{4}{2}}=\frac{196}{19}\\\frac{z}{\frac{5}{4}}=\frac{169}{14}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{294}{19}\\y=\frac{392}{19}\\z=\frac{245}{19}\end{cases}}\)

14 tháng 7 2019

\(b,\frac{x}{y}=\frac{3}{4};\frac{y}{z}=\frac{5}{7}\)và 2x + 3y - z = 186

Ta có : \(\frac{x}{y}=\frac{3}{4};\frac{y}{z}=\frac{5}{7}\Leftrightarrow\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)

\(\Leftrightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\)

\(\Leftrightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

\(\Leftrightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)

Vậy : \(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}\)

16 tháng 7 2018

Bài 1:

a) Cách 1: ta có: \(\frac{x}{y}=\frac{3}{5}\Rightarrow\frac{x}{3}=\frac{y}{5}\)

ADTCDTSBN

có: \(\frac{x}{3}=\frac{y}{5}=\frac{x-y}{3-5}=\frac{-6}{-2}=3\)

=> x/3 = 3 => x = 9

y/5 = 3 => y = 15

KL:....

Cách 2:

ta có: \(\frac{x}{y}=\frac{3}{5}\Rightarrow\frac{x}{3}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=3k\\y=5k\end{cases}}\)

mà x -y = -6 => 3k - 5k = -6 => -2k = 6 => k = 3

=> x = 3k =>...

...

b) ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{2y}{6}\)

ADTCDTSBN

có: \(\frac{x}{2}=\frac{2y}{6}=\frac{z}{5}=\frac{x+2y+z}{2+6+5}=\frac{26}{13}=2\)

=> x/2 = 2 => x = 4

y/3 = 2 => y = 6

z/5 = 2 => z = 10

KL:...

cách 2 bn cx lm như cách kia nha

16 tháng 7 2018

a,C1: \(\frac{x}{y}=\frac{3}{5}\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{x-y}{3-5}=\frac{-6}{-2}=3\)

=>x=9,y=15

C2: Đặt x/3=y/5=k => x=3k,y=5k

Ta có: x - y = 3k - 5k = -2k = -6 =>k=3

=>x=9,y=15

b, tương tự a

2/

C1: \(\frac{3x-5}{4}=\frac{x-2}{3}\Rightarrow3\left(3x-5\right)=4\left(x-2\right)\Rightarrow9x-15=4x-8\Rightarrow5x=7\Rightarrow x=\frac{7}{5}\) 

C2: \(\frac{3x-5}{4}=\frac{x-2}{3}\Rightarrow3x-5=\frac{x-2}{3}\cdot4\Rightarrow3x-5=\frac{4x-8}{3}\Rightarrow9x-15=4x-8\Rightarrow5x=7\Rightarrow x=\frac{7}{5}\)