Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\frac{x+1}{4}=\frac{2x-3}{5}=\frac{3x-2}{9y}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x+1}{4}=\frac{2x-3}{5}=\frac{3x-2}{9y}=\frac{x+1+2x-3}{4+5}=\frac{3x-2}{9}\)
Vì \(\frac{3x-2}{9y}=\frac{3x-2}{9}\Rightarrow9y=9\Rightarrow y=1\)
\(\Rightarrow\frac{x+1}{4}=\frac{3x-2}{9}\)
\(\Rightarrow9x+9=12x-8\)
\(9x-12x=-8-9\)
\(-3x=-17\)
\(x=\frac{17}{3}\)
Em chỉ giải phần B thôi nhé !
x/4=y/3=x-y/4-3=x2-y2=42-32=28/7=4
Suy ra x/4=4 -> x= 16
y/3=4-> y =12
chị thông cảm em mói học lop 6 dung thi dung sai thi sai dung la em nha
Có: \(\frac{\frac{-1}{2}}{2x-1}=\frac{\frac{0,2}{-3}}{5}\)\(\Rightarrow\left(2x-1\right).\frac{0,2}{-3}=\frac{-1}{2}.5\Leftrightarrow\left(2x-1\right).\frac{0,2}{-3}=\frac{-5}{2}\)\(\Leftrightarrow2x-1=\frac{-75}{2}\Leftrightarrow2x=\frac{-73}{2}\Leftrightarrow x=\frac{-73}{4}\)
Vậy x=-73/4
\(\text{Áp dụng dãy tỉ lệ bằng nhau ta được:}\)
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}=\frac{x+y+z+6}{3+4+5}=\frac{24}{12}=2\)
\(\Rightarrow\hept{\begin{cases}x=2.3-1=5\\y=2.4-1=7\\z=2.5-3=7\end{cases}}\)
o) \(\frac{x}{-3}=\frac{y}{-5}=\frac{z}{-4}=\frac{2x}{2.\left(-3\right)}=\frac{y}{-5}=\frac{3z}{3.\left(-4\right)}=\frac{2x}{-6}=\frac{y}{-5}=\frac{3z}{-12}\)
Áp dụng tính chất DTSBN:
\(\frac{x}{-3}=\frac{y}{-5}=\frac{z}{-4}=\frac{2x}{-6}=\frac{y}{-5}=\frac{3z}{-12}=\frac{3z-2x}{-12-\left(-6\right)}=\frac{36}{-6}=-6\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{-3}=-6\Rightarrow x=-3.\left(-6\right)=18\\\frac{y}{-5}=-6\Rightarrow y=-5.\left(-6\right)=30\\\frac{z}{-4}=-6\Rightarrow z=-4.\left(-6\right)=24\end{cases}}\)
Vậy x = 18, y = 30, z = 24
p) \(\frac{x}{4}=\frac{y}{3}\Rightarrow\left(\frac{x}{4}\right)^2=\left(\frac{y}{3}\right)^2=\frac{xy}{4.3}=\frac{12}{12}=1\)
\(\Rightarrow\hept{\begin{cases}\left(\frac{x}{4}\right)^2=1\Rightarrow\frac{x^2}{16}=1\Rightarrow x^2=1.16=16=4^2\\\left(\frac{y}{3}\right)^2=1\Rightarrow\frac{y^2}{9}=1\Rightarrow y^2=1.9=9=3^2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x\in\text{{}4;-4\\y\in\text{{}3;-3\end{cases}}\)Nhớ thêm dấu ''}'' ở đằng sau -4 và -3 nhé
Vậy ...
a) Ta có : \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\) (1)
\(\frac{x}{6}=\frac{y}{5}\Rightarrow\frac{x}{12}=\frac{y}{10}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{10}=\frac{x}{8}-\frac{2y}{24}+\frac{z}{10}=\frac{x-2y+z}{8-24+10}=\frac{27}{-6}=\frac{9}{-2}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{8}=\frac{9}{-2}\Rightarrow x=-36\\\frac{y}{12}=\frac{9}{-2}\Rightarrow y=-54\\\frac{z}{10}=\frac{9}{-2}\Rightarrow z=-45\end{cases}}\)
Vậy ....
b) Ta có : \(5x=9y\Rightarrow x=\frac{9y}{5}\)
Thay \(x=\frac{9y}{5}\)vào biểu thức \(2x-3y=30\);ta được :
\(\frac{2.9y}{5}-3y=30\Rightarrow18y-15y=150\Rightarrow3y=150\Rightarrow y=50\)
Với \(y=50\Rightarrow x=\frac{9.50}{5}=90\)
Vậy .....
c) Ta có : \(x\div y\div z=3\div4\div5\)
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2-2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4\)
Do đó : \(\hept{\begin{cases}\frac{x}{3}=4\Rightarrow x=12\\\frac{y}{4}=4\Rightarrow y=16\\\frac{z}{5}=4\Rightarrow z=20\end{cases}}\)
Vậy ...
d) Ta có : \(2x=3y\Rightarrow x=\frac{3y}{2}\left(1\right)\)
\(5y=7z\Rightarrow z=\frac{5y}{7}\left(2\right)\)
Thay (1) và (2) vào biểu thức \(3x-7y+5z=-30\);ta được :
\(\frac{3.3y}{2}-7y+\frac{5.5y}{7}=-30\)
\(\Leftrightarrow63y-98y+50y=-420\)
\(\Leftrightarrow15y=-420\Rightarrow y=-28\)
Với \(y=-28\Rightarrow x=\frac{3.-28}{2}=-42;z=\frac{5.-28}{7}=-20\)
e) Ta có : \(3x=7y\Rightarrow\frac{x}{7}=\frac{y}{3}\)
\(\Rightarrow x.y=84\Rightarrow3k.7k=84\Rightarrow21k^2=84\Rightarrow k^2=4\Rightarrow\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)
Với \(k=2\Rightarrow\frac{x}{7}=2\Rightarrow x=14;\frac{y}{3}=2\Rightarrow y=6\)
Với \(k=-2\Rightarrow\frac{x}{7}=-2\Rightarrow x=-14;\frac{y}{3}=-2\Rightarrow y=-6\)
Vậy ...
a) ta có:
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{6}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{5}\)
\(\frac{y}{6}=\frac{2y}{12}\)
\(\Rightarrow\frac{x}{4}=\frac{2y}{12}=\frac{z}{5}\) (1)
áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{x}{4}=\frac{2y}{12}=\frac{z}{5}=\frac{x-2y+z}{4-12+5}=\frac{27}{-3}=-9\) (2)
từ (1) và (2) suy ra:
\(\frac{x}{4}=-9\Rightarrow x=-9.4=-36\)
..................................y;z bn tự tính ha!^^
b) ta có:
\(5x=9y\Rightarrow\frac{x}{9}=\frac{y}{5}\)
\(\frac{x}{9}=\frac{2x}{18};\frac{y}{5}=\frac{3y}{15}\)
thui làm đến bước này thì bn tự làm nốt nha! làm câu d cũng tương tự lun! (câu c mk ko pik làm đâu!^^)
e)
ta có:
3x=7y \(\Rightarrow\frac{x}{7}=\frac{y}{3}\)
đặt \(\frac{x}{7}=\frac{y}{3}=k\left(k\in Z\right)\Rightarrow\hept{\begin{cases}x=7k\\y=3k\end{cases}}\)
vì xy = 84 nên : 7k.3k = \(84\)
\(\Rightarrow21k^2=84\)
\(\Rightarrow k^2=4=2^2=\left(-2\right)^2\)
với k = 2 thì x =........... ; y=................
với k=-2 thì x=........ ; y=....................
ự làm nốt ha!the end!^^
a
Ta có:
\(\frac{x-3}{18}=\frac{y+2}{27}=\frac{2x-6}{36}=\frac{2x-6+y+2}{36+27}=\frac{2x+y-4}{63}=\frac{2x+y-4}{9y}\)