\(\frac{2y+1}{7}+\frac{3y-2}{x-1}\)\(+\frac{5y-1}{3x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2016

Bài 1:

Giải:

Ta có: \(\frac{1+3y}{12}=\frac{1+7y}{4x}=\frac{1+1+3y+7y}{12+4x}=\frac{2+10y}{2\left(6+2x\right)}=\frac{2\left(1+5y\right)}{2\left(6+2x\right)}=\frac{1+5y}{6+2x}=\frac{1+5y}{5x}\)

+) Xét \(1+5y=0\Rightarrow y=\frac{-1}{5}\Rightarrow1+5y=0\) ( loại )

+) Xét \(1+5y\ne0\Rightarrow6+2x=5x\)

\(\Rightarrow5x-2x=6\)

\(\Rightarrow3x=6\)

\(\Rightarrow x=2\)

Mà \(\frac{1+3y}{12}=\frac{1+5y}{5x}\)

\(\Rightarrow\frac{1+3y}{12}=\frac{1+5y}{10}\)

\(\Rightarrow10\left(1+3y\right)=12\left(1+5y\right)\)

\(\Rightarrow10+30y=12+60y\)

\(\Rightarrow10-12=60y-30y\)

\(\Rightarrow-2=30y\)

\(\Rightarrow y=\frac{-1}{15}\)

Vậy \(x=2,y=\frac{-1}{15}\)

 

 

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

27 tháng 10 2019

x=225

y=315

z=405

10 tháng 11 2018

\(\frac{3x-2y}{37}=\frac{5y-3z}{15}=\frac{2z-5x}{2}=\)

\(\frac{3xz-2yz}{37z}=\frac{5yx-3zx}{15x}=\frac{2zy-5xy}{2y}=\frac{3xz-2yz+5yx-3zx+2zy-5xy}{37z+15x+2y}=0\)(t/c dãy tỉ số bằng nhau)

\(\frac{3x-2y}{37}=0\Rightarrow3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\left(1\right)\)

\(\frac{5y-3z}{15}=0\Rightarrow5y=3z\Rightarrow\frac{z}{5}=\frac{y}{3}\left(2\right)\)

\(\frac{2z-5x}{2}=0\Rightarrow2z=5x\Rightarrow\frac{x}{2}=\frac{z}{5}\left(3\right)\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{10x}{20}=\frac{3y}{9}=\frac{2z}{10}=\frac{10x-3y-2z}{20-9-10}=\frac{-4}{1}=-4\)

\(x=-8,y=-12,z=-20\)

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

25 tháng 9 2018

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)

suy ra:  \(x=2k;\)\(y=3k;\)\(z=4k\)

Ta có:   \(x^2+y^2+z^2=116\)

<=>  \(\left(2k\right)^2+\left(3k\right)^2+\left(4k\right)^2=116\)

<=>  \(29k^2=116\)

<=>  \(k^2=4\)

<=>  \(k=\pm2\)

tự làm nốt

14 tháng 3 2024

2 tháng 2 2019

Nhác quá mấy bài này hỏi làm j

25 tháng 12 2016

Mình sẽ trình bày rõ hơn ở (2) nha

Ta có:

\(\frac{2}{x+1}=\frac{3}{2y-3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{2}{x+1}=\frac{3}{2y-3}\) = \(\frac{2-3}{\left(x+1\right)-\left(2y-3\right)}=\frac{-1}{x+1-2y+3}=\frac{-1}{x-2y+4}\)

(Vì trước ngoặc của 2y - 3 là dấu trừ nên khi phá ngoặc thì nó sẽ trở thành dấu cộng.Đây là quy tắc phá ngoặc mà bạn đã được học ở lớp 6 đó)

25 tháng 12 2016

Ahaha, mình cũng học rồi mà quên mất, cảm giác hiểu ra cái này khó diễn tả thật cậu ạ. Vui chả nói nên lời :))
À quên cảm ơn cậu nhé :^)

29 tháng 9 2016

Đăng từng bài thôi chứ bạn

29 tháng 9 2016

mất công lém