Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ pt đã cho dễ dàng suy ra x,y>0
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{\sqrt{x}}+\sqrt{x}\ge2\sqrt{\frac{1}{\sqrt{x}}\cdot\sqrt{x}}=2\)
\(\frac{1}{\sqrt{y}}+\sqrt{y}\ge2\sqrt{\frac{1}{\sqrt{y}}\cdot\sqrt{y}}=2\)
Cộng theo vế 2 BĐT trên ta có:
\(VT=\frac{1}{\sqrt{x}}+\sqrt{x}+\frac{1}{\sqrt{y}}+\sqrt{y}\ge4=VP\)
Khi \(x=y=1\)
Áp dụng Cosi
\(\frac{1}{\sqrt{2x-3}}+\sqrt{2x-3}\ge2\)
\(\frac{4}{\sqrt{y-2}}+\sqrt{y-2}\ge4\)
\(\frac{16}{\sqrt{3z-1}}+\sqrt{3z-1}\ge8\)
=> VT >/ VP
Dấu ' = ' xảy ra khi 2x -3 =1=>x =2
y -2 = 4 => y =6
3z -1 =16 => z =17/3
b, Gọi biểu thức đề ra là B
=> Theo bđt cô si ta có : \(B\ge3\sqrt[3]{\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{z^2}\right)\left(z^2+\frac{1}{x^2}\right)}\)
=> \(B\ge3\sqrt[3]{2\cdot\frac{x}{y}\cdot2\cdot\frac{y}{z}\cdot2\cdot\frac{z}{x}}=3\sqrt[3]{8}=6\)
( Chỗ này là thay \(x^2+\frac{1}{y^2}\ge2\sqrt{\frac{x^2}{y^2}}=2\cdot\frac{x}{y}\) và 2 cái kia tương tự vào )
=> Min B=6
Theo bđt cô si thì ta có : \(\sqrt{\left(x+y\right)\cdot1}\le\frac{x+y+1}{2}\)
\(\sqrt{\left(z+x\right)\cdot1}\le\frac{z+x+1}{2}\)
\(\sqrt{\left(y+z\right)\cdot1}\le\frac{y+z+1}{2}\)
=> Cộng vế theo vế ta được : \(A\le\frac{2\left(x+y+z\right)+3}{2}=\frac{5}{2}\)
Dấu = xảy ra khi : x+y+z=1 và x+y=1 và y+z=1 và x+z=1
=> \(x=y=z=\frac{1}{3}\)
Vậy ...
Áp dụng định luật cosi \(\frac{A+B}{2}\)\(\geq\)\(\sqrt{A.B}\) sẽ ra kq là 14
DK: \(x,y>0\)
Ap dung BDT AM-GM ta co:
\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\sqrt{x}+\sqrt{y}\ge2\sqrt{\frac{1}{\sqrt{x}}.\sqrt{x}}+2\sqrt{\frac{1}{\sqrt{y}}.\sqrt{y}}=2+2=4\)
Lai co: \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\sqrt{x}+\sqrt{y}=4\)
=> dau "=" cua BDT phai xay ra
Khi do: \(\hept{\begin{cases}\frac{1}{\sqrt{x}}=\sqrt{x}\\\frac{1}{\sqrt{y}}=\sqrt{y}\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=1\end{cases}}\) (t/m)
Vay....