Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(x - 2xy + y - 3 = 0\)
\(\Rightarrow-2xy+x+y=3\)
\(\Rightarrow-2.\left(-2xy+x+y\right)=-2.3\)
\(\Rightarrow4xy-2x-2y=-6\)
\(\Rightarrow4xy-2x-2y+1=-6+1\)
\(\Rightarrow2x.\left(2y-1\right).\left(2y-1\right)=-5\)
\(\Rightarrow\left(2y-1\right).\left(2x-1\right)=-5=1.\left(-5\right)=-5.1=\left(-1\right).5=5.\left(-1\right)\)
Tự lập bảng đi -.-
Nhân từng vế bất đẳng thức ta được : (xyz)2 = 36xyz + Nếu một trong các số x,y,z bằng 0 thì 2 số còn lại cũng bằng 0 + Nếu cả 3 số x,y,z khác 0 thì chia 2 vế cho xyz ta được xyz = 36 + Từ xyz =36 và xy = z ta được z2 = 36 nên z = 6; z = -6 + Từ xyz =36 và yz = 4x ta được 4x2 = 36 nên x = 3; x = -3 + Từ xyz =36 và ta được 9y2 = 36 nên y = 2; y = -2 - Nếu z = 6 thì x và y cùng dấu nên x = 3, y = 2 hoặc x = -3 , y = -2 - Nếu z = -6 thì x và y trái dấu nên x = 3 ; y = -2 hoặc x = -3; y=2 |
Vậy có 5 bộ số (x, y, z) thoã mãn: (0,0,0); (3,2,6);(-3,-2,6);(3,-2,-6);(-3,2.-6)
a) \(\left|x-\dfrac{4}{11}\right|+\left|5+y\right|=0\)
<=>\(\left[{}\begin{matrix}x-\dfrac{4}{11}=0\\5+y=0\end{matrix}\right.\) <=>\(\left[{}\begin{matrix}x=\dfrac{4}{11}\\y=-5\end{matrix}\right.\)
phần b, c tương tự
b: 2x^3-1=15
=>2x^3=16
=>x=2
\(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\)
=>\(\dfrac{y-25}{16}=\dfrac{z+9}{25}=\dfrac{18}{9}=2\)
=>y-25=32; z+9=50
=>y=57; z=41
d: 3/5x=2/3y
=>9x=10y
=>x/10=y/9=k
=>x=10k; y=9k
x^2-y^2=38
=>100k^2-81k^2=38
=>19k^2=38
=>k^2=2
TH1: k=căn 2
=>\(x=10\sqrt{2};y=9\sqrt{2}\)
TH2: k=-căn 2
=>\(x=-10\sqrt{2};y=-9\sqrt{2}\)
1.
\(\left(\dfrac{-2}{3}\right).0,75+1\dfrac{2}{3}:\left(\dfrac{-4}{9}\right)+\left(\dfrac{-1}{2}\right)^2\)
\(=\left(\dfrac{-2}{3}\right).\dfrac{3}{4}+\dfrac{5}{3}.\left(\dfrac{9}{-4}\right)+\dfrac{1}{4}\)
\(=-\dfrac{1}{2}+\dfrac{45}{-12}+\dfrac{1}{4}\)
\(=-\dfrac{6}{12}+\dfrac{-45}{12}+\dfrac{3}{4}\)
\(=\dfrac{-48}{12}\)
\(=-4\)
2.
a) \(\dfrac{3}{4}-\left(x+\dfrac{1}{2}\right)=\dfrac{4}{5}\)
\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{3}{4}-\dfrac{4}{5}\)
\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{-1}{20}\)
\(\Leftrightarrow x=\dfrac{-1}{20}-\dfrac{1}{2}\)
\(\Leftrightarrow x=\dfrac{-1}{20}-\dfrac{10}{20}\)
\(\Leftrightarrow x=\dfrac{-11}{20}\)
b) \(\left|x-\dfrac{2}{5}\right|+\dfrac{3}{4}=\dfrac{11}{4}\)
\(\Leftrightarrow\left|x-\dfrac{2}{5}\right|=\dfrac{11}{4}-\dfrac{3}{4}\)
\(\Leftrightarrow\left|x-\dfrac{2}{5}\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{2}{5}=-2\Rightarrow x=-2+\dfrac{2}{5}=\dfrac{-8}{5}\\x-\dfrac{2}{5}=2\Rightarrow x=2+\dfrac{2}{5}=\dfrac{12}{5}\end{matrix}\right.\)
3.
a) \(\dfrac{16}{2^n}=2\)
\(\Leftrightarrow2^n=16:2\)
\(\Leftrightarrow2^n=8\)
\(\Leftrightarrow2^n=2^3\)
\(\Leftrightarrow n=3\)
b) \(\dfrac{\left(-3\right)^n}{81}=-27\)
\(\Leftrightarrow\left(-3\right)^n=\left(-27\right).81\)
\(\Leftrightarrow\left(-3\right)^n=\left(-3\right)^3.\left(-3\right)^4\)
\(\Leftrightarrow\left(-3\right)^n=\left(-3\right)^7\)
\(\Leftrightarrow n=7\)
4. Ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}\) (1)
\(\dfrac{y}{5}=\dfrac{z}{4}\Rightarrow\dfrac{y}{15}=\dfrac{z}{12}\) (2)
Từ (1) và (2) suy ra \(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}\)
Vì \(x-y+x=-49\) ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{10-15+12}=\dfrac{-49}{7}=-7\)
Vậy \(\left\{{}\begin{matrix}x=\left(-7\right).10=-70\\y=\left(-7\right).15=-105\\z=\left(-7\right).12=-84\end{matrix}\right.\)
1)
x(x-y) = \(\dfrac{3}{10}\)
=> \(x^2-xy=\dfrac{3}{10}\) (1)
y(x-y) = \(-\dfrac{3}{50}\)
=> \(xy-y^2=-\dfrac{3}{50}\) (2)
Trừ (1) cho (2), ta có :
\(x^2-xy-xy+y^2=\dfrac{3}{10}+\dfrac{3}{50}\)
\(\Rightarrow x^2-2xy+y^2=\dfrac{18}{50}=\dfrac{9}{25}\)
=> \(\left(x-y\right)^2=\dfrac{9}{25}\)
\(\Rightarrow\left[{}\begin{matrix}x-y=\dfrac{3}{5}\\x-y=-\dfrac{3}{5}\end{matrix}\right.\)
TH1
x- y = \(\dfrac{3}{5}\)
Ta có
\(\left\{{}\begin{matrix}x\left(x-y\right)=\dfrac{3}{10}\\y\left(x-y\right)=-\dfrac{3}{50}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3}{5}x=\dfrac{3}{10}\\\dfrac{3}{5}y=-\dfrac{3}{50}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-\dfrac{1}{10}\end{matrix}\right.\)
TH2:
x-y=\(-\dfrac{3}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}x\left(x-y\right)=\dfrac{3}{10}\\y\left(x-y\right)=-\dfrac{3}{50}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-\dfrac{3}{5}x=\dfrac{3}{10}\\-\dfrac{3}{5}y=-\dfrac{3}{50}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{5}\end{matrix}\right.\)
Vậy các cặp (x,y) thỏa mãn là (x;y) \(\in\left\{\left(\dfrac{1}{2};-\dfrac{1}{5}\right);\left(-\dfrac{1}{2};\dfrac{1}{5}\right)\right\}\)
2) \(\left(x-3\right)\left(x+\dfrac{1}{2}\right)>0\)
TH1:
\(\left\{{}\begin{matrix}x-3>0\\x+\dfrac{1}{2}>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>3\\x>-\dfrac{1}{2}\end{matrix}\right.\)
=> x >3
TH2:
\(\left\{{}\begin{matrix}x-3< 0\\x+\dfrac{1}{2}< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< 3\\x< -\dfrac{1}{2}\end{matrix}\right.\)
=> x <\(-\dfrac{1}{2}\)
Vậy giá trị x thỏa mãn là x < -1/2 hoặc x>3
1)
Từ gt,ta có : x(x - y) - y(x - y) =\(\frac{3}{10}-\frac{-3}{50}\)
(x - y)2 =\(\frac{9}{25}\)\(\Rightarrow\orbr{\begin{cases}x-y=\frac{3}{5}\\x-y=\frac{-3}{5}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{3}{10}:\frac{3}{5}=\frac{1}{2}\\x=\frac{3}{10}:\frac{-3}{5}=\frac{-1}{2}\end{cases};\orbr{\begin{cases}y=\frac{-3}{50}:\frac{3}{5}=\frac{-1}{10}\\y=\frac{-3}{50}:\frac{-3}{5}=\frac{1}{10}\end{cases}}}}\)
Vậy\(x=\frac{1}{2};y=\frac{-1}{10}\) hoặc\(x=\frac{-1}{2};y=\frac{1}{10}\)
a: \(\Leftrightarrow\left|x+\dfrac{4}{15}\right|=-2.15+3.75=1.6=\dfrac{8}{5}\)
=>x+4/15=8/5 hoặc x+4/15=-8/5
=>x=4/3 hoặc x=-28/15
c: =>x-y=0 và y+9/25=0
=>x=y=-9/25
d: =>-1/3<x-3/5<1/3
=>4/15<x<14/15
e: =>|x+5,5|>5,5
=>x+5,5>5,5 hoặc x+5,5<-5,5
=>x>0 hoặc x<-11
\(\frac{x+1}{3}=\frac{y-2}{5}=\frac{2z+14}{9}\)
\(\Leftrightarrow\frac{2x+2}{6}=\frac{2y-4}{10}=\frac{2z+14}{9}\)
\(=\frac{2x+2-\left(2y-4\right)+2z+14}{6-10+9}=\frac{\left(2x+2z-2y\right)+20}{5}\)(Dãy tỉ số bằng nhau)
Ta có: \(x+z=y\Leftrightarrow2\left(x+z\right)=2y\)
\(\Leftrightarrow2x+2z=2y\Leftrightarrow2x+2z-2y=0\)
\(\Rightarrow\frac{\left(2x+2x-2y\right)+20}{5}=\frac{20}{5}=4\)
\(\Leftrightarrow\frac{2x+2}{6}=\frac{2y-4}{10}=\frac{2z+14}{9}=4\)
\(\Leftrightarrow\hept{\begin{cases}2x+2=24\\2y-4=40\\2z+14=36\end{cases}\Leftrightarrow\hept{\begin{cases}2x=22\\2y=44\\2z=22\end{cases}}\Leftrightarrow}\hept{\begin{cases}x=11\\y=22\\z=11\end{cases}}\)
Vậy \(x=z=11;y=22.\)
a) Ta có: \(6x=4y=3z\Rightarrow\dfrac{6x}{12}=\dfrac{4y}{12}=\dfrac{3z}{12}\Rightarrow\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{12}=\dfrac{x+2y-3z}{2+6-12}=\dfrac{-2}{-4}=\dfrac{1}{2}.\)
Với: \(\dfrac{x}{2}=\dfrac{1}{2}\Rightarrow x=1.\)
\(\dfrac{2y}{6}=\dfrac{y}{3}=\dfrac{1}{2}\Rightarrow y=\dfrac{1}{2}.3=\dfrac{3}{2}.\)
\(\dfrac{3z}{12}=\dfrac{z}{4}=\dfrac{1}{2}\Rightarrow z=\dfrac{1}{2}.4=\dfrac{4}{2}=2.\)
Vậy: \(x=1;y=\dfrac{3}{2};z=2.\)
a) Với \(x+y+z=0\) ta tìm được \(\left(x;y;z\right)\rightarrow\left(0;0;0\right)\)
Với \(x+y+z\ne0\) áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{y+z+1}=\dfrac{y}{z+x+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}\)
Hay: \(x+y+z=\dfrac{1}{2}\Leftrightarrow\left\{{}\begin{matrix}y+z=\dfrac{1}{2}-x\\x+z=\dfrac{1}{2}-y\\x+y=\dfrac{1}{2}-z\end{matrix}\right.\)
Thay vào đề bài ta được:
\(\dfrac{x}{\dfrac{1}{2}-x+1}=\dfrac{y}{\dfrac{1}{2}-y+1}=\dfrac{z}{\dfrac{1}{2}-z-2}=\dfrac{1}{2}\) Dễ dàng tìm được x;y;z
b) Theo đề bài ta có sẵn x+y+z khác 0
Áp dụng dãy tỉ số rồi làm tương tự câu a
a)Ta có: \(\frac{x}{y+z+1}=\frac{y}{x+y+2}=\frac{z}{x+y-3}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{y+z+1}=\frac{y}{x+y+2}=\frac{z}{x+y-3}\)
\(=\frac{x+y+z}{y+z+1+x+y+2+x+y-3}\)
\(=\frac{x+y+z}{2x+2y+2z}\)
\(=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
\(\dfrac{x-1}{2}=\dfrac{y}{3}=\dfrac{x-1+y}{2+3}=\dfrac{10}{5}=2\)
\(=>x-1=4=>x=5=>y=6\)
ta có:
x-1/2=y/3
áp dụng:
x-1/2=y/3=x-1+y/2+3=x+y-1/5=11-1/5=2
⇒x-1=4⇔x=3
y=3.2⇔y=6