(y−\(\frac{1}{10...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2017

a)\(x^2+\left(y-\frac{1}{10}\right)^4=0\)

Ta thấy: \(\left\{\begin{matrix}x^2\ge0\\\left(y-\frac{1}{10}\right)^4\ge0\end{matrix}\right.\)

\(\Rightarrow x^2+\left(y-\frac{1}{10}\right)^4\ge0\)

\(x^2+\left(y-\frac{1}{10}\right)^4=0\)

Xảy ra khi \(\left\{\begin{matrix}x^2=0\\\left(y-\frac{1}{10}\right)^4=0\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}x=0\\y=\frac{1}{10}\end{matrix}\right.\)

21 tháng 1 2017

b)\(\left(x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\le0\)

Ta thấy: \(\left\{\begin{matrix}\left(x-5\right)^{20}\ge0\\\left(y^2-\frac{1}{4}\right)^{10}\ge0\end{matrix}\right.\)

\(\Rightarrow\left(x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\ge0\)

\(\left(x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\le0\)

Suy ra \(\left\{\begin{matrix}\left(x-5\right)^{20}=0\\\left(y^2-\frac{1}{4}\right)^{10}=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x-5=0\\y^2-\frac{1}{4}=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x=5\\y=\pm\frac{1}{2}\end{matrix}\right.\)

23 tháng 9 2016

haiz` khó phết đấy chứ k phải dễ đâu m` là HSG lớp 8 mà ko hiểu j cả ~~~

23 tháng 9 2016

Nếu đây là câu lớp 8 thì dễ hơn, biến đổi ra hằng đẳng thức là được

23 tháng 9 2019

a) Để x2+(y-1/10)4=0 thì:

X2 và (y-1/10)4 có kết quả là 2 số đối nhau

mà 2 lũy thừa trên đều bậc chẵn

=> X2 và (y-1/10)4 ko có kết quả là 2 số đối nhau

=> TH1 (loại)

=> x2=0; (y-1/10)4=0

<=> x2=02

<=> x=0

=> (y-1/10)4=0

<=>(y-1/10)4=04

<=>y-1/10=0

<=>y=0+1/10

<=>y=1/10

Vậy x=0;y=1/10

Phần b mình ko biết, bạn tự tìm nhé bạn

AH
Akai Haruma
Giáo viên
19 tháng 3 2019

1.

\(-3x^5y^4+3x^2y^3-7x^2y^3+5x^5y^4\)

\(=(-3x^5y^4+5x^5y^4)+(3x^2y^3-7x^2y^3)\)

\(=2x^5y^4-4x^2y^3\)

2.

\(\frac{1}{2}x^4y-\frac{3}{2}x^3y^4+\frac{5}{3}x^4y-x^3y^4\)

\(=(\frac{1}{2}x^4y+\frac{5}{3}x^4y)-(\frac{3}{2}x^3y^4+x^3y^4)\)

\(=\frac{13}{6}x^4y-\frac{5}{2}x^3y^4\)

3.

\(5x-7xy^2+3x-\frac{1}{2}xy^2\)

\(=(5x+3x)-(7xy^2+\frac{1}{2}xy^2)\)

\(=8x-\frac{15}{2}xy^2\)

AH
Akai Haruma
Giáo viên
19 tháng 3 2019

4.

\(\frac{-1}{5}x^4y^3+\frac{3}{4}x^2y-\frac{1}{2}x^2y+x^4y^3\)

\(=(\frac{-1}{5}x^4y^3+x^4y^3)+(\frac{3}{4}x^2y-\frac{1}{2}x^2y)\)

\(=\frac{4}{5}x^4y^3+\frac{1}{4}x^2y\)

5.

\(\frac{7}{4}x^5y^7-\frac{3}{2}x^2y^6+\frac{1}{5}x^5y^7+\frac{2}{3}x^2y^6\)

\(=(\frac{7}{4}x^5y^7+\frac{1}{5}x^5y^7)+(-\frac{3}{2}x^2y^6+\frac{2}{3}x^2y^6)\)

\(=\frac{39}{20}x^5y^7-\frac{5}{6}x^2y^6\)

6.

\(\frac{1}{3}x^2y^5(-\frac{3}{5}x^3y)+x^5y^6=(\frac{1}{3}.\frac{-3}{5})(x^2.x^3)(y^5.y)+x^5y^6\)

\(=\frac{-1}{5}x^5y^6+x^5y^6=\frac{4}{5}x^5y^6\)

30 tháng 9 2017

3/ ta để ý thấy ở số mũ sẽ có thừa số 1000-103=0

nên số mũ chắc chắn bằng 0

mà số nào mũ 0 cũng bằng 1 nên A=1

5/ vì |2/3x-1/6|> hoặc = 0

nên A nhỏ nhất khi |2/3x-6|=0

=>A=-1/3

6/ =>14x=10y=>x=10/14y

23x:2y=23x-y=256=28

=>3x-y=8

=>3.10/4y-y=8

=>6,5y=8

=>y=16/13

=>x=10/14y=10/14.16/13=80/91

8/106-57=56.26-56.5=56(26-5)=59.56 

có chứa thừa số 59 nên chia hết 59

4/ tính x 

sau đó thế vào tinh y,z

15 tháng 3 2019

a,-200 x10 t10z3

b,\(\frac{-5}{4}\)x11 y5 z4

c,\(\frac{2}{15}\)x6 y6 z9

d,\(\frac{1}{7}\)x10 y6 z7

e,-4z6 y10 z6

12 tháng 2 2017

Bài 1:

a) \(\left(3x-\frac{4}{5}\right)^2+\left(2y+\frac{3}{7}\right)^2=0\)

\(\Rightarrow\left\{\begin{matrix}3x-\frac{4}{5}=0\\2y+\frac{3}{7}=0\end{matrix}\right.\rightarrow\left\{\begin{matrix}3x=\frac{4}{5}\\2y=-\frac{3}{7}\end{matrix}\right.\rightarrow\left\{\begin{matrix}x=\frac{4}{15}\\y=-\frac{3}{14}\end{matrix}\right.\)

7 tháng 5 2019

1, \(\left(xy\right)^2-\frac{1}{2}x^2y^2+3xy^2.\left(-\frac{1}{3}x\right)\)

\(=x^2y^2-\frac{1}{2}x^2y^2-x^2y^2\)

\(=-\frac{1}{2}x^2y^2\)

2, \(4.\left(-\frac{1}{2}x\right)^2-\frac{3}{2}x.\left(-x\right)+\frac{1}{3}x^2\)

\(=x^2+\frac{3}{2}x^2+\frac{1}{3}x^2\)

\(=\frac{17}{6}x^2\)

3, \(-4.\left(2x\right)^2y^3+\frac{1}{2}xy.\left(-2xy^2\right)+\frac{1}{4}x^2y^3\)

\(=-16x^2y^3-x^2y^3+\frac{1}{4}x^2y^3\)

\(=-\frac{67}{4}x^2y^3\)

4, \(\frac{1}{3}x^4y-\frac{5}{3}x^3.\left(\frac{5}{2}xy\right)+\frac{3}{4}x^4y\)

\(=\frac{1}{3}x^4y-\frac{25}{6}x^4y+\frac{3}{5}x^4y\)

\(=-\frac{97}{30}x^4y\)

5, \(\left(-2x^3y^4\right)^2-5x^2y.\left(\frac{3}{4}x^4y^7\right)-\frac{2}{3}x^6y^8\)

\(=4x^6y^8-\frac{15}{4}x^6y^8-\frac{2}{3}x^6y^8\)

\(=-\frac{5}{12}x^6y^8\)

12 tháng 10 2019

Bài 1 :

a/ \(x^2-7x+6=0\)

\(\Leftrightarrow x^2-6x-x+6=0\)

\(\Leftrightarrow x\left(x-6\right)-\left(x-6\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)

Vậy....

b/ \(x^2-10x+9=0\)

\(\Leftrightarrow x^2-9x-x+9=0\)

\(\Leftrightarrow x\left(x-9\right)-\left(x-9\right)=0\)

\(\Leftrightarrow\left(x-9\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-9=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=1\end{matrix}\right.\)

Vậy...

c/ \(x^2+9x+8=0\)

\(\Leftrightarrow x^2+8x+x+8=0\)

\(\Leftrightarrow\left(x+8\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+8=0\\x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-8\\x=-1\end{matrix}\right.\)

Vậy ...

d/ \(x^2-11x+10=0\)

\(\Leftrightarrow x^2-11x+10=0\)

\(\Leftrightarrow x^2-x-10x+10=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-10=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=10\end{matrix}\right.\)

Vậy...

12 tháng 10 2019

Bài 2 :

Ta có :

\(\frac{2x-y}{x+y}=\frac{2}{3}\)

\(\Leftrightarrow3\left(2x-y\right)=2\left(x+y\right)\)

\(\Leftrightarrow6x-3y=2x+2y\)

\(\Leftrightarrow6x-2x=2y+3y\)

\(\Leftrightarrow4x=5y\)

\(\Leftrightarrow\frac{x}{y}=\frac{5}{4}\)

Vậy....

Bài 3 : không hiểu đề lắm ???!!!!

Bài 4 :

Ta có :

\(\frac{x}{y^2}=2\Leftrightarrow x=2y^2\left(1\right)\)

Thay (1) ta có :

\(\frac{x}{y}=16\)

\(\Leftrightarrow\frac{2y^2}{y}=16\)

\(\Leftrightarrow2y=16\)

\(\Leftrightarrow y=8\Leftrightarrow x=128\)

Vậy...