Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
x2 - 2x + 1 = 6y2 - 2x +2
x2 - (2x - 1) = 6y2 - (2x -1) +1
x2 = 6y2 +1
x2 - 1 = 6y2
(x - 1) (x + 1) = 6y2
Ta có:
(x - 1) + (x + 1) =2x chia hết cho 2
(x + 1) - (x - 1) = 2 chia hết cho 2
=> (x-1) và (x+1) cùng tính chẵn lẻ
+/ x -1 và x + 1 cùng lẻ
=> ( x-1) (x +1) là số lẻ
Mà 6y2 luôn là số chẵn
=> Trường hợp này loại
+/ x -1 và x + 1 cùng chẵn
=> ( x-1) (x +1) là hai số chẵn liên tiếp
Mà tích hai số chẵn liên tiếp luôn chia hết cho 8
=> (x - 1) ( x +1) chia hết cho 8
=> 6y2 chia hết cho 8
=>3y2 chia hết cho 4
Mà (3 ,4) = 1
=> y2 chia hết cho 4
Mà x , y là các số nguyên tố
=> y = 2
=> x2 = 6 . 22 +1
=> x2 = 25
=>x = 5
Vậy x =5, y = 2
a) Ta có : \(\left|x-2\right|\ge0\forall x\)
\(\left|x+y-10\right|\ge0\forall x\)
Nên : \(\left|x-2\right|+\left|x+y-10\right|\ge0\forall x\)
Mà đề bài cho \(\left|x-2\right|+\left|x+y-10\right|\le0\)
Nên : \(\hept{\begin{cases}x-2=0\\x+y-10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\2+y-10=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=8\end{cases}}}\)
Vậy x = 2 ; y = 8
Ta có : \(\left|x-2\right|\ge0\forall x\)
\(\left|x.y-6\right|\ge0\forall x,y\)
Mà : \(\left|x-2\right|+\left|x.y-6\right|=0\)
Nên : pt \(\Leftrightarrow\hept{\begin{cases}x-2=0\\x.y-6=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\x.y=6\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\2y=6\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=3\end{cases}}}\)
a) Ta có = 1 = 1.1 = (-1) . (-1)
Lập bảng xét 2 trường hợp ta có :
\(x+3\) | \(1\) | \(-1\) |
\(y+2\) | \(1\) | \(-1\) |
\(x\) | \(-2\) | \(-4\) |
\(y\) | \(-1\) | \(-3\) |
Vậy các cặp (x;y) thỏa mãn là : (- 2 ; - 1) ; (- 4 ; - 3)
b)
\(a;\left(x+3\right)\left(y+2\right)=1\)
=> Có 2 TH:
*TH1: x+3 = 1 và y+2 =1
=> x = -2 y = -1
* TH2: x +3 = -1 và y + 2 = -1
=> x = -4 y = -3
\(a.pnto>3\\ \Rightarrow pko⋮3\\ \Rightarrow p^2:3duw1\\ \Rightarrow p^2-1⋮3\left(hs\right)\)
b.
Ta thấy x = 0 hoặc y=0
x=0=>
y=0=>
tự tìm
a) \(x^2-5x+6=0\)
\(=>x^2-5x=-6\)
\(=>x\left(x-5\right)=-6\)
\(=>\orbr{\begin{cases}x=0\\x-5=0\end{cases}=>\orbr{\begin{cases}x=0\\x=5\end{cases}}}\)
Vậy x = { 0 ; 5 }
a) \(x^2-5x+6=0\)
=>\(x^2-5x+\frac{25}{4}-\frac{1}{4}=0\)
=>\(\left(x-\frac{5}{2}\right)^2=\frac{1}{4}\)
=>\(\orbr{\begin{cases}x-\frac{5}{2}=\frac{1}{2}\\x-\frac{5}{2}=-\frac{1}{2}\end{cases}}\)
=>\(\orbr{\begin{cases}x=3\\x=2\end{cases}}\)