Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x và y biết :
a) \(\dfrac{x}{y}=-2\) và \(x+y=12\)
Ta có : \(\dfrac{x}{y}=-2\Rightarrow x=-2y\)
\(x+y=12\Rightarrow-2y+y=12\Rightarrow y=-12\)
\(\Rightarrow x=-2y=-2.\left(-12\right)=24\)
b) \(\dfrac{x}{y}=\dfrac{1}{4}\) và \(x-y=-15\)
Ta có : \(\dfrac{x}{1}=\dfrac{y}{4}=\dfrac{x-y}{1-4}=\dfrac{-15}{-3}=5\)
\(\dfrac{x}{1}=5\Rightarrow x=5\)
\(\dfrac{y}{4}=5\Rightarrow y=20\)
c) \(\dfrac{x}{3}=\dfrac{y}{5}\) và \(x-y=32\)
Ta có : \(\dfrac{x-y}{3-5}=\dfrac{32}{-2}=-16\)
\(\dfrac{x}{3}=-16\Rightarrow x=-48\)
\(\dfrac{y}{5}=-16\Rightarrow y=-80\)
d) \(\dfrac{x}{y}=\dfrac{7}{3}=>\dfrac{x}{7}=\dfrac{y}{3}\)
Ta có : \(\dfrac{x}{7}=\dfrac{y}{3}=\dfrac{x+y}{7+3}=\dfrac{40}{10}=4\)
\(\dfrac{x}{7}=4=>x=28\)
\(\dfrac{y}{3}=4=>y=12\)
e) \(\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{x+y}{5+9}=\dfrac{56}{14}=4\)
\(\dfrac{x}{5}=4=>x=20\)
\(\dfrac{y}{9}=4=>y=36\)
f) \(\dfrac{x}{7}=\dfrac{y}{10}=\dfrac{x-y}{7-10}=\dfrac{36}{-3}=-12\)
\(\dfrac{x}{7}=-12=>x=-84\)
\(\dfrac{y}{10}=-12=>y=-120\)
ìm x và y biết:
a,xyxy= -2 và x+y =12
b,xyxy=1414 và x-y =-15
c,x3x3=y5y5 và x-y =32
d,xyxy=7373 và x+y =40
e,x5x5=y9y9 và x+y =56
f,x7x7=y10y10 và x-y =36
haha
Bài 1:
a: \(\Leftrightarrow\dfrac{x+2}{2}=x-5\)
=>2x-10=x+2
=>x=12
b: \(\Leftrightarrow\left(x+2\right)^2=100\)
=>x+2=10 hoặc x+2=-10
=>x=-12 hoặc x=8
c: \(\Leftrightarrow\left(2x-5\right)^3=27\)
=>2x-5=3
=>2x=8
=>x=4
a) \(\dfrac{12-7x}{-13}=\dfrac{4-3x}{-5}\)
\(\Rightarrow\left(12-7x\right).\left(-5\right)=\left(-13\right).\left(4-3x\right)\)
\(\Leftrightarrow35x-60=39x-52\)
\(\Rightarrow35x-39x=60-52\)
\(\Rightarrow-4x=8\)
\(\Rightarrow x=-2\)
Vậy \(x=-2.\)
b) Giải
Đặt \(\dfrac{x}{5}=\dfrac{y}{7}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=5k\\y=7k\end{matrix}\right.\)
Mà \(x+y=48\)
\(\Rightarrow5k+7k=48\)
\(\Leftrightarrow12k=48\)
\(\Leftrightarrow k=48:12\)
\(\Leftrightarrow k=4\)
Vậy \(\left\{{}\begin{matrix}x=5k=5.4=20\\y=7k=7.4=28\end{matrix}\right.\).
c) Giải
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\end{matrix}\right.\)
Mà \(x^2+y^2=100\)
\(\Rightarrow\left(3k\right)^2+\left(4k\right)^2=100\)
\(\Leftrightarrow3^2.k^2+4^2.k^2=100\)
\(\Leftrightarrow k^2\left(3^2+4^2\right)=100\)
\(\Leftrightarrow k^2.25=100\)
\(\Rightarrow k^2=4\)
\(\Rightarrow k=\pm2\)
\(\circledast k=2\Rightarrow\left\{{}\begin{matrix}x=3k=3.2=6\\x=4k=4.2=8\end{matrix}\right.\)
\(\circledast k=-2\Rightarrow\left\{{}\begin{matrix}x=3k=3.\left(-2\right)=-6\\y=4k=4.\left(-2\right)=-8\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=6;y=8\\x=-6;y=-8\end{matrix}\right.\).
\(a,\dfrac{12-7x}{-13}=\dfrac{4-3x}{-5}\)
⇒ \(\dfrac{-12+7x}{13}=\dfrac{-4+3x}{5}\)
⇒ \(5.\left(-12+7x\right)=13.\left(-4+3x\right)\)
⇒ \(-60+35x=-52+39x\)
⇒ \(-60+52=39x-35x\)
⇒ \(-8=4x\)
⇒ \(x=-8:4\)
⇒ \(x=-2\)
\(b,\dfrac{x}{5}=\dfrac{y}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{x+y}{5+7}=\dfrac{48}{12}=4\)
⇒ \(\dfrac{x}{5}=4;\dfrac{y}{7}=4\)
⇒ \(x=5.4;y=7.4\)
⇒ \(x=20;y=28\)
\(c,\dfrac{x}{3}=\dfrac{y}{4}\)
⇒ \(\left(\dfrac{x}{3}\right)^2=\left(\dfrac{y}{4}\right)^2=\dfrac{x^2}{3^2}=\dfrac{y^2}{4^2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{100}{25}=4\)
⇒\(\dfrac{x^2}{9}=4;\dfrac{y^2}{16}=4\)
⇒ \(x^2=9.4;y^2=16.4\)
⇒ \(x^2=36;y^2=64\)
⇒ \(x=+-6;y=+-8\)
Vì \(\dfrac{x}{3}=\dfrac{y}{4}\) nên x;y cùng dấu
⇒ \(x=6,y=8\)
\(x=-6,y=-8\)
a, \(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)
\(\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\)
\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{45}{49}\)
Đến đây tự làm tiếp nhé
b, \(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
=> x = 75, y = 50, z = 30
c, \(\frac{3}{4}x=\frac{5}{7}y=\frac{10}{11}z\)
\(\Rightarrow\frac{3x}{4.30}=\frac{5y}{7.30}=\frac{10z}{11.30}\)
\(\Rightarrow\frac{x}{40}=\frac{y}{42}=\frac{z}{33}\)
\(\Rightarrow\frac{2x}{80}=\frac{3y}{126}=\frac{4z}{132}=\frac{2x-3y+4z}{80-126+132}=\frac{8,6}{86}=\frac{1}{10}\)
=> x=... , y=... , z=...
d, Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k,y=5k\)
Ta có: xy = 90 => 2k.5k = 90 => 10k2 = 90 => k2 = 9 => k = 3 hoặc -3
Với k = 3 => x = 6, y = 15
Với k = -3 => x = -6, y = -15
Vậy...
e, Tương tự câu d
b) Ta có :\(\text{ 2x = 3y = 5z }=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{95}{\frac{19}{30}}=\frac{1}{6}\)
=> \(2x=\frac{1}{6}\Rightarrow x=\frac{1}{12}\)
\(3y=\frac{1}{6}\Rightarrow y=\frac{1}{18}\)
\(5z=\frac{1}{6}\Rightarrow z=\frac{1}{30}\)
a)\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x+y}{3+7}=\dfrac{20}{10}=2\)
\(\dfrac{x}{3}=2\Rightarrow x=6\)
\(\dfrac{y}{7}=2\Rightarrow y=14\)
b)\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x-y}{5-2}=\dfrac{6}{3}=2\)
\(\dfrac{x}{5}=2\Rightarrow x=10\)
\(\dfrac{y}{2}=2\Rightarrow y=4\)
Bài 1:
\(a,\dfrac{x}{3}=\dfrac{y}{7}\) và \(x+y=20\)
\(=\dfrac{x+y}{3+7}=\dfrac{20}{10}=2\)
\(\Rightarrow x=2.3=6\)
\(y=2.7=14\)
Vậy \(x=6\) và \(y=14\)
\(b,\dfrac{x}{5}=\dfrac{y}{2}\) và \(x-y=6\)
\(=\dfrac{x-y}{5-2}=\dfrac{6}{3}=2\)
\(\Rightarrow x=2.5=10\)
\(y=2.2=4\)
Vậy \(x=10\) và \(y=4\)
\(c,\dfrac{x}{7}=\dfrac{18}{14}\)
Từ tỉ lệ thức trên ta có:
\(14x=7.18\)
\(x=\dfrac{7.18}{14}\)
\(x=9\)
Vậy \(x=9\)
\(d,6:x=1\dfrac{3}{4}:5\)
\(6:x=\dfrac{7}{20}\)
\(x=6:\dfrac{7}{20}\)
\(x=\dfrac{120}{7}\)
Vậy \(x=\dfrac{120}{7}\)
\(e,\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\) và \(x-y+z=8\)
\(=\dfrac{x-y+z}{2-4+6}=\dfrac{8}{4}=2\)
\(\Rightarrow x=2.2=4\)
\(y=2.4=8\)
\(z=2.6=12\)
Vậy \(x=4;y=8;z=12\)
a, \(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x+y}{3+7}=\dfrac{1}{2}\)
Từ đó suy ra x=1,5; y=3,5
b,\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x-y}{5-2}=\dfrac{1}{2}\)
Từ đó suy ra x=2,5; y=1
c,\(\dfrac{x}{7}=\dfrac{18}{14}\Leftrightarrow\dfrac{x}{7}=\dfrac{9}{7}\Rightarrow x=9\)
d,\(\dfrac{6}{x}=\dfrac{\dfrac{7}{4}}{5}\Leftrightarrow\dfrac{6}{x}=\dfrac{24}{7}\left(\dfrac{\dfrac{7}{4}}{5}\right)\Leftrightarrow\dfrac{6}{x}=\dfrac{6}{\dfrac{120}{7}}\Rightarrow x=\dfrac{120}{7}\)
e,\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{8}=\dfrac{x-y+z}{2-4+8}=\dfrac{4}{3}\)
Từ đó suy ra x=\(\dfrac{8}{3}\); y=\(\dfrac{16}{3}\); z=\(\dfrac{32}{3}\)
\(\dfrac{6}{2x+1}=\dfrac{2}{7}\)
=> 2(2x+1) = 6.7
4x+2=42
4x=40
x=10
Vậy x=10
a)\(\dfrac{6}{2x+1}=\dfrac{2}{7}\\ =>6.7=2.\left(2x+1\right)\\ =>2x+1=\dfrac{6.7}{2}=\dfrac{42}{2}=21\\ =>2x=21-1=20\\ =>x=\dfrac{20}{2}=10\)
b) \(\dfrac{24}{7x-3}=-\dfrac{4}{25}\\ =>24.25=-4.\left(7x-3\right)\\ =>7x-3=\dfrac{24.25}{-4}=-150\\ =>7x=-150+3=-147\\ =>x=\dfrac{-147}{7}=-21\)
c) \(\dfrac{4}{x-6}=\dfrac{y}{24}=-\dfrac{12}{18}\\ =>x-6=\dfrac{4.18}{-12}=-6\\ =>x=-6+6=0\\ y=\dfrac{-12.24}{18}=-16\)
d) \(-\dfrac{1}{5}\le\dfrac{x}{8}\le\dfrac{1}{4}\\ < =>-\dfrac{8}{40}\le-\dfrac{5x}{40}\le\dfrac{10}{40}\\ =>-8\le-5x\le10\\ Mà:-8< -5.1< -5.0< -5.\left(-1\right)< -5.\left(-2\right)=10\\ =>x\in\left\{-2;-1;0;1\right\}\)
e) \(\dfrac{x+46}{20}=x\dfrac{2}{5}\\ < =>\dfrac{x+46}{20}=\dfrac{5x+2}{5}\\ =>5\left(x+46\right)=20\left(5x+2\right)\\ < =>5x+230=100x+40\\ < =>230-40=100x-5x\\ < =>190=95x\\ =>x=\dfrac{190}{95}=2\)
f) \(y\dfrac{5}{y}=\dfrac{56}{y}\\ < =>\dfrac{y^2+5}{y}=\dfrac{56}{y}\\ =>y\left(y^2+5\right)=56y\\ =>y^2+5=\dfrac{56y}{y}=56\\ =>y^2=56-5=51\\ =>y=\sqrt{51}\)
b: Ta có: x/y=7/9
nên x/7=y/9
=>x/49=y/63
Ta có: y/z=7/3
nên y/7=z/3
=>y/63=z/27
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{49}=\dfrac{y}{63}=\dfrac{z}{27}=\dfrac{x-y+z}{49-63+27}=\dfrac{-15}{13}\)
Do đó: x=-735/13; y=-945/13; z=-405/13
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{2x+5y-2z}{2\cdot7+5\cdot20-2\cdot32}=\dfrac{100}{50}=2\)
Do đó: x=14; y=40; z=64
d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{5}=\dfrac{z}{2}=\dfrac{x-y-z}{8-5-2}=3\)
Do đó: x=24; y=15; z=6
a, Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{3}=\dfrac{y}{12}=\dfrac{x+y}{3+12}=\dfrac{5}{15}=\dfrac{1}{3}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{1}{3}\\\dfrac{y}{12}=\dfrac{1}{3}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=4\end{matrix}\right.\)
Vậy ...
b, \(x:2=y:\left(-5\right)\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{-5}\)
Theo t.c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=\dfrac{-14}{7}=-2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=-2\\\dfrac{y}{-5}=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=10\end{matrix}\right.\)
Vậy ...
c, \(13x=7x\Leftrightarrow\dfrac{13x}{91}=\dfrac{7x}{91}\)
\(\Leftrightarrow\dfrac{x}{7}=\dfrac{y}{13}\)
Theo t,c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x+y}{7+13}=\dfrac{40}{20}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{7}=2\\\dfrac{y}{13}=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=14\\y=26\end{matrix}\right.\)
Vậy ....
d, \(\dfrac{4}{x}=\dfrac{5}{y}\Leftrightarrow\dfrac{x}{4}=\dfrac{y}{5}\)
Theo t,c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{x+y}{4+5}=\dfrac{36}{9}=4\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{4}=4\\\dfrac{y}{5}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=16\\y=20\end{matrix}\right.\)
Vậy ..
a) ta có : \(\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{12}\\x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}-\dfrac{y}{12}=0\\x+y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4x-y=0\\x+y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x=5\\x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=4\end{matrix}\right.\) vậy \(x=1;y=4\)
b) ta có : \(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{-5}\\x-y=-14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}+\dfrac{y}{5}=0\\x-y=-14\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x+2y=0\\2x-2y=-28\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x=-28\\x-y=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=10\end{matrix}\right.\) vậy \(x=-4;y=10\)
c) ta có : \(\left\{{}\begin{matrix}13x=7y\\x+y=40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}13x-7y=0\\x+y=40\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}13x-7y=0\\7x+7y=280\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}20x=280\\x+y=40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=14\\y=26\end{matrix}\right.\) vậy \(x=14;y=26\)
) ta có : \(\left\{{}\begin{matrix}\dfrac{4}{x}=\dfrac{5}{y}\\x+y=36\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x=4y\\x+y=36\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x-4y=0\\4x+4y=144\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}9x=144\\x+y=36\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=16\\y=20\end{matrix}\right.\) vậy \(x=16;y=20\)