Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
\(a,\frac{x}{8}-\frac{1}{y}=\frac{1}{4}\)
\(\Rightarrow\frac{1}{y}=\frac{x}{8}-\frac{1}{4}\)
\(\Rightarrow\frac{1}{y}=\frac{x-2}{8}\)
\(\Rightarrow\left(x-2\right)\cdot y=1\cdot8\)
\(\Rightarrow y\left(x-2\right)=8\)
xét bảng :
x-2 | -1 | 1 | -2 | 2 | -4 | 4 | -8 | 8 |
y | -8 | 8 | -4 | 4 | -2 | 2 | -1 | 1 |
x | 1 | 3 | 0 | 4 | -2 | 6 | -6 | 10 |
vậy_
b, tương tự
\(a,\frac{x}{8}-\frac{1}{y}=\frac{1}{4}\)
\(\Leftrightarrow\frac{1}{y}=\frac{x}{8}-\frac{1}{4}\)
\(\Leftrightarrow\frac{1}{y}=\frac{x}{8}-\frac{2}{8}\)
\(\Leftrightarrow\frac{1}{y}=\frac{x-2}{8}\)
\(\Leftrightarrow y(x-2)=8\)
Vì \(x,y\inℤ\)nên \(x-2\inℤ\), ta có bảng sau:
y | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
x - 2 | -8 | 8 | -4 | 4 | -2 | 2 | -1 | 1 |
x | -6 | 10 | -2 | 6 | 0 | 4 | 1 | 3 |
mình tính ra nek
5/x + y/4 = 1/8
suy ra 5/x = 1/8 -y/4 = 1/8 - 2y/8
ta có 1-2y=5
2y = 1-5 = -4
y = -4/2=-2
5/x = 1/8+2/4
5/x=5/8
suy ra x=8
1) 5/x = 1/8 - y/4 = (1-2y)/8
<=> x = 5*8/(1-2y) ; thấy 1-2y là số lẻ nên UCLN(8,1-2y) = 1
do đó x/8 = 5/(1-2y) (*)
x, y nguyên khi 1-2y phải là ước của 5
* 1-2y = -1 => y = 1 => x = -40
* 1-2y = 1 => y = 0 => x = 40
* 1-2y = -5 => y = 3 => x = -8
* 1-2y = 5 => y = -2 => x = 8
vậy có 4 cặp (x,y) nguyên (-40,1) ; (40, 0) ; (-8, -5) ; (8, 5)
2)1 + 2 +..+ k = k(k+1)/2
=> 1 - 1/(1+2+..+k) = 1 - 2/k(k+1) = (k²+k-2)/k(k+1) = (k-1)(k+2)/k(k+1) (*)
ghi đề gì mà hết thấy cái đuôi, chắc là đến n ?, thay (*) cho k từ 2 đến n
A = [1.4/2.3].[2.5/3.4].[3.6/4.5] .. [ (n-1)(n+2) /n(n+1)]
= 1.4.2.5.3.6.4.7.5.8 ... (n-1)(n+2) /2.3.3.4.4.5.. n(n+1)
= 1.2.3.4².5²... (n-1)².n(n+1)(n+2)/ 2.3².4²... n²(n+1) = (n+2)/3n
x=40
y=0
Ta có: 5/x + y/4 = 1/8
=> 20 + xy/4x = 1/8
=> (20 + xy).8 = 4x
=> 160 + 8xy = 4x
=> 4x - 8xy = 160
=> 4x.(1 - 2y) = 160
=> x.(1 - 2y) = 40
Vì x, y là các số tự nhiên nên x và 1 - 2y là các ước tự nhiên của 40
Từ đó bạn lập bảng ra các ước của 40, lấy các giá trị là số tự nhiên, dễ thôi mà, làm được thôi, đúng ko?
5/x+y/4 =1/8
suy ra 5+y=1 còn x+4=8
y=5-1=4 còn x=8-4=4
vậy x=4 và y=4
\(\Leftrightarrow40+2xy=x\left(x\ne0\right)\)
\(\Leftrightarrow x\left(1-2y\right)=40\Leftrightarrow x=\dfrac{40}{1-2y}\)
Do 2y chẵn => 1-2y lẻ
Để x nguyên thì 1-2y là ước của 40
\(\Rightarrow1-2y=\left\{-5;-1;1;5\right\}\Rightarrow y=\left\{3;1;0;-2\right\}\)
\(\Rightarrow x=\left\{-8;-40;40;8\right\}\)
) 5/x = 1/8 - y/4 = (1-2y)/8
<=> x = 5*8/(1-2y) ; thấy 1-2y là số lẻ nên UCLN(8,1-2y) = 1
do đó x/8 = 5/(1-2y) (*)
x, y nguyên khi 1-2y phải là ước của 5
* 1-2y = -1 => y = 1 => x = -40
* 1-2y = 1 => y = 0 => x = 40
* 1-2y = -5 => y = 3 => x = -8
* 1-2y = 5 => y = -2 => x = 8
vậy có 4 cặp (x,y) nguyên (-40,1) ; (40, 0) ; (-8, -5) ; (8, 5)