Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ : \(x+y\ne0\)
\(x^2-2y^2=xy\)
\(x^2-y^2-y^2-xy=0\)
\(\left(x-y\right)\left(x+y\right)-y\left(y+x\right)=0\)
\(\left(x+y\right)\left(x-2y\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+y=0\left(Loai\right)\\x-2y=0\left(Chon\right)\end{matrix}\right.\)
Với x - 2y = 0 ta có x = 2y
Thay x = 2y vào A ta có :
\(A=\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)
a)
\(x+2y=5\Leftrightarrow x=5-2y\)
Thay vào ta được
\(M=\left(5-2y\right)^2+2y^2=25-20y+4y^2+y^2=6y^2-20y+25=6\left(y^2-\frac{10}{3}y+\frac{25}{9}\right)+\frac{25}{3}=6\left(y-\frac{5}{3}\right)^2+\frac{25}{3}\)
Mà \(6\left(y-\frac{5}{3}\right)^2\ge0\forall y\Leftrightarrow6\left(y-\frac{5}{3}\right)^2+\frac{25}{3}\ge\frac{25}{3}\)
Dấu '' = '' xảy ra \(\Leftrightarrow y=\frac{5}{3}\)
\(\Rightarrow x=\frac{5}{3}\)
\(\Rightarrow MinM=\frac{25}{3}\Leftrightarrow x=y=\frac{5}{3}\)
b) \(=y^3-1+\frac{2}{3}x^3y-2xy+\frac{1}{3}x^2y^3-y^3\)
\(=\frac{2}{3}x^3y+\frac{1}{3}x^2y^3-2xy-1\)
) \(\dfrac{x^3+8y^3}{2y+x}\)
\(=\dfrac{x^3+\left(2y\right)^3}{x+2y}\)
\(=\dfrac{\left(x+2y\right)\left[x^2+x.2y+\left(2y\right)^2\right]}{x+2y}\)
\(=x^2+2xy+4y^2\)
b) \(\dfrac{a-1}{2\left(a-4\right)}+\dfrac{a}{a-4}\) MTC: \(2\left(a-4\right)\)
\(=\dfrac{a-1}{2\left(a-4\right)}+\dfrac{2a}{2\left(a-4\right)}\)
\(=\dfrac{a-1+2a}{2\left(a-4\right)}\)
\(=\dfrac{3a-1}{2\left(a-4\right)}\)
c) \(\dfrac{x^3+3x^2y+3xy^2+y^3}{2x+2y}\)
\(=\dfrac{\left(x+y\right)^3}{2\left(x+y\right)}\)
\(=\dfrac{\left(x+y\right)^2}{2}\)
d) \(\left(x-5\right)^2+\left(7-x\right)\left(x+2\right)\)
\(=\left(x^2-2.x.5+5^2\right)+\left(7x+14-x^2-2x\right)\)
\(=x^2-10x+25+7x+14-x^2-2x\)
\(=39-5x\)
e) \(\dfrac{3x}{x-2}-\dfrac{2x+1}{2-x}\)
\(=\dfrac{3x}{x-2}+\dfrac{2x+1}{x-2}\)
\(=\dfrac{3x+2x+1}{x-2}\)
\(=\dfrac{5x+1}{x-2}\)
h) \(\dfrac{1}{3x-2}-\dfrac{1}{3x+2}-\dfrac{3x+6}{4-9x^2}\)
\(=\dfrac{1}{3x-2}-\dfrac{1}{3x+2}+\dfrac{3x+6}{9x^2-4}\)
\(=\dfrac{1}{3x-2}-\dfrac{1}{3x+2}+\dfrac{3x+6}{\left(3x-2\right)\left(3x+2\right)}\) MTC: \(\left(3x-2\right)\left(3x+2\right)\)
\(=\dfrac{3x+2}{\left(3x-2\right)\left(3x+2\right)}-\dfrac{3x-2}{\left(3x-2\right)\left(3x+2\right)}+\dfrac{3x+6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{\left(3x+2\right)-\left(3x-2\right)+\left(3x+6\right)}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{3x+2-3x+2+3x+6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{3x+10}{\left(3x-2\right)\left(3x+2\right)}\)
Tìm 2 số x và y hay tìm hiệu x - y ?
\(\left|3x-2y\right|=20x-50-2x^2\)
\(\Leftrightarrow\left|3x-2y\right|=-2\left(x^2-10x+25\right)\)
\(\Leftrightarrow\left|3x-2y\right|=-2\left(x-5\right)^2\)
Ta thấy : \(\left|3x-2y\right|\ge0\)
\(-2\left(x-5\right)^2\le0\)
Dấu " = " xảy ra khi và chỉ khi :
\(\Leftrightarrow\hept{\begin{cases}3x-2y=0\\x-5=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=5\\y=7,5\end{cases}}\)
\(\Leftrightarrow x-y=5-7,5=-2,5\)
Vậy x - y = -2,5