Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+2y^2+2xy-2x+2=0.\)
\(\Leftrightarrow\left(x^2+y^2+1+2xy-2x-2y\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\left(x+y-1\right)^2+\left(y+1\right)^2=0\)
Mà \(\left(x+y-1\right)^2\ge0,\left(y+1\right)^2\ge0\)
Suy ra \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x+y=1\\y=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=-1\end{cases}.}\)
\(2x^2-8x+y^2+2y+9=0\)
\(\Leftrightarrow\left(2x^2-8x+8\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow2\left(x^2-4x+4\right)+\left(y+1\right)^2=0\)
\(\Leftrightarrow2\left(x-2\right)^2+\left(y+1\right)^2=0\)
Mà \(2\left(x-2\right)^2\ge0,\left(y+1\right)^2\ge0\)
Suy ra \(\hept{\begin{cases}2\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}}\)
a) (x2+2x+1)+(y2+2y+1)=0
=>(x+1)2+(y+1)2=0
Vì\(\left(x+1\right)^2\ge0;\left(y+1\right)^2\ge0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=-1\end{cases}}\)
Vậy x=y=-1
Bạn làm tiếp câu còn lại nha <3
Chúc bạn học tốt :)
a) \(2x^2+y^2+2xy+10x+25=0\)
\(\Leftrightarrow x^2+x^2+y^2+2xy+10x+25=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2+10x+25\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x+5\right)^2=0\)
Vì \(\hept{\begin{cases}\left(x+y\right)^2\ge0\forall x\\\left(x+5\right)^2\ge0\forall x\end{cases}}\)
\(\Rightarrow\left(x+y\right)^2+\left(x+5\right)^2\ge0\forall x\)
Vậy đẳng thức xảy ra\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=5\end{cases}}\)
b)\(x^2+3y^2+2xy-2y+1=0\)
\(\Leftrightarrow x^2+y^2+2y^2+2xy-2y+\frac{1}{2}+\frac{1}{2}=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(2y^2-2y+\frac{1}{2}\right)+\frac{1}{2}=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)
Vì \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2\ge0\)
nên \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}>0\)
Mà\(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)
nên pt vô nghiệm
Mấy chế em xin câu 3 ạ :>>
3. Giải pt :
\(x^2-10x+16=0\)
\(\Leftrightarrow x^2-8x-2x+16=0\)
\(\Leftrightarrow\left(x-8\right)\cdot\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
Vậy gt của x để bt đạt giá trị bằng 0 là \(x\in\left\{2;8\right\}\)
4. \(2x^2+2xy+y^2+2x+1=0\)
\(\Leftrightarrow y^2+2xy+2x^2+2x+1=0\)
\(\Leftrightarrow y^2+2xy+x^2+x^2+2x+1=0\)
\(\Leftrightarrow\left(y+x\right)^2+\left(x+1\right)^2=0\)
\(\Rightarrow x+1=0\Rightarrow x=-1\)
\(\Rightarrow y+x=0\Leftrightarrow y-1=0\Rightarrow y=1\)
Vậy giá trị của \(x\) là -1. (Nếu kết luận cả y thì giá trị của \(y\) là 1)
2x2+y2−2xy−2y+2=0⇔4x2+2y2−4xy−4y+4=0⇔4x2−4xy+y2+y2−4y+4=0⇔(2x−y)2+(y−2)2=0do:(2x−y)2≥0(y−2)2≥0=>(2x−y)2+(y−2)2≥02x2+y2−2xy−2y+2=0⇔4x2+2y2−4xy−4y+4=0⇔4x2−4xy+y2+y2−4y+4=0⇔(2x−y)2+(y−2)2=0do:(2x−y)2≥0(y−2)2≥0=>(2x−y)2+(y−2)2≥0
Dấu = xảy ra<=>{2x−y=0y−2=0⇔{y=22x−2=0⇔{y=2x=1{2x−y=0y−2=0⇔{y=22x−2=0⇔{y=2x=1
Vậy (x;y)=(1;2)