Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x(x-5).(x+5)-(x+2).(x^2-2x+4)=17
\(\Leftrightarrow x\left(x^2-25\right)-\left(x^3-2x^2+4x+2x^2-4x+8\right)=17\)
\(\Leftrightarrow x^3-25x-x^3+2x^2-4x-2x^2+4x-8=17\)
\(\Leftrightarrow-25x=17+8\)
\(\Leftrightarrow-25x=25\)
\(\Leftrightarrow x=-1\)
#)Giải :
\(x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=17\)
\(\Rightarrow x\left(x^2-25\right)-\left(x^3-2x^2+4x+2x^2-4x+8\right)=17\)
\(\Rightarrow x^3-25-\left(x^3+8\right)=17\)
\(\Rightarrow x^3-25x-x^3-8=17\)
\(\Rightarrow-25x=25\Rightarrow x=-1\)
Vậy x = -1
\(\left(3x+2\right)\left(x-1\right)-3\left(x+1\right)\left(x-2\right)=4\)
\(\Rightarrow3x^2-3x+2x-2-\left(3x+3\right)\left(x-2\right)=4\)
\(\Rightarrow3x^2-3x+2x-2-\left(3x^2-6x+3x-6\right)=4\)
\(\Rightarrow3x^2-3x+2x-2-3x^2+6x-3x+6=4\)
\(\Rightarrow2x+4=4\)
\(\Rightarrow x=0\)
Bài 1: Tìm x
a) (x-5) (x-3)+ 2(x-5)=0
b) (x-2)(x^2+2x+4)-(x+2)(x^2-2x+4)=2(x+2)
giúp e với ạ, e cảm ơn
a) (x - 5)(x - 3) + 2(x - 5) = 0
(x - 5)(x - 3 + 2) = 0
(x - 5)(x - 1) = 0
x - 5 = 0 hoặc x - 1 = 0
*) x - 5 = 0
x = 5
*) x - 1 = 0
x = 1
Vậy x = 1; x = 5
b) (x - 2)(x² + 2x + 4) - (x + 2)(x² - 2x + 4) = 2(x + 2)
x³ - 8 - x³ - 8 = 2x + 4
2x = -8 - 8 - 4
2x = -20
x = -20 : 2
x = -10
a)
\(\left(x-5\right)\left(x-3\right)+2\left(x-5\right)=0\)
\(\left(x-5\right)\left(x-3+2\right)=0\)
\(\left(x-5\right)\left(x-1\right)=0\)
\(x-5=0\) hoặc \(x-1=0\)
+) \(x-5=0\\ \Rightarrow x=5\)
+) \(x-1=0\\ \Rightarrow x=1\)
Vậy \(x=1\) hoặc \(x=5\)
b) \(\left(x-2\right)\left(x^2+2x+4\right)-\left(x+2\right)\left(x^2-2x+4\right)=2\left(x+2\right)\)
\(x^3-8-x^3-8=2x+4\)
\(2x=-8-8-4\)
\(2x=-20\)
\(x=-20:2\)
\(x=-10\)
Vậy \(x=-10\)
a) ĐKXĐ: \(x\notin\left\{0;-5\right\}\)
b) Ta có: \(B=\dfrac{x^2+2x}{2x+10}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x\left(x^2+2x\right)}{2x\left(x+5\right)}+\dfrac{2\left(x+5\right)\left(x-5\right)}{2x\left(x+5\right)}+\dfrac{50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+2x^2+2\left(x^2-25\right)+50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+4x^2-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}\)
\(=\dfrac{x^2+4x-5}{2\left(x+5\right)}\)
\(=\dfrac{x^2+5x-x-5}{2\left(x+5\right)}\)
\(=\dfrac{x\left(x+5\right)-\left(x+5\right)}{2\left(x+5\right)}\)
\(=\dfrac{\left(x+5\right)\left(x-1\right)}{2\left(x+5\right)}\)
\(=\dfrac{x-1}{2}\)
Để B=0 thì \(\dfrac{x-1}{2}=0\)
\(\Leftrightarrow x-1=0\)
hay x=1(nhận)
Để \(B=\dfrac{1}{4}\) thì \(\dfrac{x-1}{2}=\dfrac{1}{4}\)
\(\Leftrightarrow x-1=\dfrac{1}{2}\)
hay \(x=\dfrac{3}{2}\)(nhận)
Vậy: Để B=0 thì x=1 và Để \(B=\dfrac{1}{4}\) thì \(x=\dfrac{3}{2}\)
2:
a: =>x-1=0 hoặc 3x+1=0
=>x=1 hoặc x=-1/3
b: =>x-5=0 hoặc 7-x=0
=>x=5 hoặc x=7
c: =>\(\left[{}\begin{matrix}x-1=0\\x+5=0\\3x-8=0\end{matrix}\right.\Leftrightarrow x\in\left\{1;-5;\dfrac{8}{3}\right\}\)
d: =>x=0 hoặc x^2-1=0
=>\(x\in\left\{0;1;-1\right\}\)
Ít thôi -..-
a) ( 3x + 2 )( 2x + 9 ) - ( x + 3 )( 6x + 1 ) = ( x + 1 )2 - ( x + 2 )( x - 2 )
<=> 6x2 + 31x + 18 - ( 6x2 + 19x + 3 ) = x2 + 2x + 1 - ( x2 - 4 )
<=> 6x2 + 31x + 18 - 6x2 - 19x - 3 = x2 + 2x + 1 - x2 + 4
<=> 12x + 15 = 2x + 5
<=> 12x - 2x = 5 - 15
<=> 10x = -10
<=> x = -1
b) ( 2x + 3 )( x - 4 ) + ( x - 5 )( x - 2 ) = ( 3x - 5 )( x - 4 )
<=> 2x2 - 5x - 12 + x2 - 7x + 10 = 3x2 - 17x + 20
<=> 3x2 - 12x - 2 = 3x2 - 17x + 20
<=> 3x2 - 12x - 3x2 + 17x = 20 + 2
<=> 5x = 22
<=> x = 22/5
c) ( x + 2 )3 - ( x - 2 )3 - 12x( x - 1 ) = -8
<=> x3 + 6x2 + 12x + 8 - ( x3 - 6x2 + 12x - 8 ) - 12x2 + 12x = -8
<=> x3 + 6x2 + 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8
<=> 12x + 16 = -8
<=> 12x = -24
<=> x = -2
d) ( 3x - 1 )2 - 5( x + 1 ) + 6x - 3.2x + 1 - ( x - 1 )2 = 16
<=> 9x2 - 6x + 1 - 5x - 5 + 6x - 6x + 1 - ( x2 - 2x + 1 ) = 16
<=> 9x2 - 11x - 3 - x2 + 2x - 1 = 16
<=> 8x2 - 9x - 4 = 16
<=> 8x2 - 9x - 4 - 16 = 0
<=> 8x2 - 9x - 20 = 0
( Đến đây bạn có hai sự lựa chọn : 1 là vô nghiệm
2 là nghiệm vô tỉ =) )
a) (3x + 2)(2x + 9) - (x + 3)(6x + 1) = (x + 1)2 - (x + 2)(x - 2)
=> 3x(2x + 9) + 2(2x + 9) - x(6x + 1) - 3(6x + 1) = x2 + 2x + 1 - x(x - 2) - 2(x - 2)
=> 6x2 + 27x + 4x + 18 - 6x2 - x - 18x - 3 = x2 + 2x + 1 - x2 + 2x - 2x + 4
=> (6x2 - 6x2) + (27x + 4x - x - 18x) + (18 - 3) = (x2 - x2) + (2x + 2x - 2x) + (1 + 4)
=> 12x + 15 = 2x + 5
=> 12x + 15 - 2x - 5 = 0
=> 10x + 10 = 0
=> 10x = -10 => x = -1
b) (2x + 3)(x - 4) + (x - 5)(x - 2) = (3x - 5)(x - 4)
=> 2x(x - 4) + 3(x - 4) + x(x - 2) - 5(x - 2) = 3x(x - 4) - 5(x - 4)
=> 2x2 - 8x + 3x - 12 + x2 - 2x - 5x + 10 = 3x2 - 12x - 5x + 20
=> (2x2 + x2) + (-8x + 3x - 2x - 5x) + (-12 + 10) = 3x2 - 17x + 20
=> 3x2 - 12x - 2 = 3x2 - 17x + 20
=> 3x2 - 12x - 2 - 3x2 + 17x - 20 = 0
=> (3x2 - 3x2) + (-12x + 17x) + (-2 - 20) = 0
=> 5x - 22 = 0
=> 5x = 22 => x = 22/5
c) (x + 2)3 - (x - 2)3 - 12x(x - 1) = -8
=> x3 + 6x2 + 12x + 8 - (x3 - 6x2 + 12x - 8) - 12x2 + 12x = -8
=> x3 + 6x2 + 12x + 8 -x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8
=> (x3 - x3) + (6x2 + 6x2 - 12x2) + (12x - 12x + 12x) + (8 + 8) = -8
=> 12x + 16 = -8
=> 12x = -24
=> x = -2
Còn bài cuối làm nốt
x(x - 5)(x + 5) - (x + 2)(x2 - 2x + 4) = 17
=> x(x2 - 25) - (x3 + 23) = 17
=> x3 - 25x - x3 - 8 = 17
=> 25x - 8 = 17
=> 25x = 17 + 8
=> 25x = 25
=> x = 1
#)Giải :
\(x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=17\)
\(\Rightarrow x^3-25x-\left(x^3+8\right)=17\)
\(\Rightarrow x^3-25x-x^3-8=17\)
\(\Rightarrow-25x=25\Leftrightarrow x=-1\)