Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính năng tag đã bị vô hiệu hóa từ lâu rồi bạn, ko nhận được thông báo đâu
\(\Leftrightarrow\left\{{}\begin{matrix}x^2\left(\frac{x}{y}-\frac{y}{x}\right)=216\\y^2\left(\frac{x}{y}-\frac{y}{x}\right)=24\end{matrix}\right.\)
Chia vế cho vế:
\(\frac{x^2}{y^2}=9\Rightarrow\frac{x}{y}=\pm3\Rightarrow\left[{}\begin{matrix}x=3y\\x=-3y\end{matrix}\right.\)
Thay vào pt dưới: \(\left[{}\begin{matrix}3y^2-\frac{y^2}{3}=24\\-3y^2+\frac{y^2}{3}=24\end{matrix}\right.\)
a)\(\dfrac{x+1}{x^2+x+1}-\dfrac{x-1}{x^2-x+1}=\dfrac{3}{x\left(x^4+x^2+1\right)}\left(1\right)\)
ĐK:\(x\ne0\)
\(\left(1\right)\Leftrightarrow\dfrac{x^3+1-\left(x^3-1\right)}{\left(x^2+1+x\right)\left(x^2+1-x\right)}=\dfrac{3}{x\left(x^4+x^2+1\right)}\\ \Leftrightarrow\dfrac{2}{\left(x^2+1\right)^2-x^2}=\dfrac{3}{x\left(x^4+x^2+1\right)}\\ \Leftrightarrow\dfrac{2x-3}{x\left(x^4+x^2+1\right)}=0\Rightarrow2x-3=0\Leftrightarrow x=\dfrac{3}{2}\left(TM\right)\)
\(\dfrac{9-x}{2009}+\dfrac{11-x}{2011}=2\Leftrightarrow\left(\dfrac{9-x}{2009}-1\right)+\left(\dfrac{11-x}{2011}-1\right)=0\Leftrightarrow\dfrac{-2000-x}{2009}+\dfrac{-2000-x}{2011}=0\\ \Leftrightarrow\left(-2000-x\right)\left(\dfrac{1}{2009}+\dfrac{1}{2011}\right)=0\Rightarrow x=-2000\)
https://diendantoanhoc.net/topic/163051-x-fracxsqrtx2-1-frac3512/
\(\Leftrightarrow\dfrac{x+1}{\left(x+1\right)^2-1}+\dfrac{x+6}{\left(x+6\right)^2-1}=\dfrac{x+2}{\left(x+2\right)^2-1}=\dfrac{x+5}{\left(x+5\right)^2-1}\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)^2-x-1+\left(x+6\right)\left(x+1\right)^2-x-6=\left(x+2\right)\left(x+5\right)^2-x-2+\left(x+5\right)\left(x+2\right)^2-x-5\)
=>(x+1)(x+6)^2+(x+6)(x+1)^2=(x+2)(x+5)^2+(x+2)^2(x+5)
=>(x+1)(x+6)(x+6+x+1)=(x+2)(x+5)(x+5+x+2)
=>(2x+7)[x^2+7x+6-x^2-7x-10]=0
=>(2x+7)=0
=>x=-7/2
a) TXĐ: \(D=R\).
b) \(TXD=D=R\backslash\left\{4\right\}\)
c) Đkxđ: \(\left\{{}\begin{matrix}4x+1\ge0\\-2x+1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-1}{4}\\x\le\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\dfrac{-1}{4}\le x\le\dfrac{1}{2}\).
TXĐ: D = \(\left[\dfrac{-1}{4};\dfrac{1}{2}\right]\)
a) Đkxđ: \(\left\{{}\begin{matrix}x+9\ge0\\x^2+8x-20\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-9\\\left\{{}\begin{matrix}x\ne2\\x\ne-10\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-9\\x\ne2\end{matrix}\right.\)
Txđ: D = [ - 9; 2) \(\cup\) \(\left(2;+\infty\right)\)
b) Đkxđ: \(\left\{{}\begin{matrix}2x+1\ne0\\x-3\ne0\end{matrix}\right.\Leftrightarrow\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{-1}{2}\\x\ne3\end{matrix}\right.\)
Txđ: \(D=R\backslash\left\{\dfrac{-1}{2};3\right\}\)
c) \(x^2+2x-5\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne-1+\sqrt{6}\\x\ne-1-\sqrt{6}\end{matrix}\right.\)
Txđ: \(D=R\backslash\left\{-1+\sqrt{6};-1-\sqrt{6}\right\}\)
a,\(\dfrac{5x-2}{2-2x}+\dfrac{2x-1}{2}=1-\dfrac{x^2-x-3}{1-x}\)
<=>\(\dfrac{5x-2}{2\left(1-x\right)}+\dfrac{2x-1}{2}=1-\dfrac{x^2-x-3}{1-x}\)
<=>\(\dfrac{5x-2}{2\left(1-x\right)}+\dfrac{\left(2x-1\right)\left(1-x\right)}{2\left(1-x\right)}=\dfrac{2\left(1-x\right)}{2\left(1-x\right)}-\dfrac{2\left(x^2-x-3\right)}{2\left(1-x\right)}\)
=>\(5x-2+2x-2x^2-1+x=2-2x-2x^2+2x+6\)
<=>\(-2x^2+8x-3=-2x^2+8\)
<=>\(8x=11< =>x=\dfrac{11}{8}\)
vậy..........
b,\(\dfrac{1-6x}{x-2}+\dfrac{9x+4}{x+2}=\dfrac{x\left(3x-1\right)+1}{\left(x-2\right)\left(x+2\right)}\)
<=>\(\dfrac{\left(1-6x\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(9x+4\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{x\left(3x-1\right)+1}{\left(x-2\right)\left(x+2\right)}\)
=>\(x+2-6x^2-12x+9x^2-18x+4x-8=3x^2-x+1\)
<=>\(3x^2-25x-6=3x^2-x+1\)
<=>\(-24x=7< =>x=\dfrac{-7}{24}\)
vậy..................
câu c tương tự nhé :)
a. R / \(\left\{-2\right\}\)
b. R / \(\left\{4;-1\right\}\)
c. R ( mẫu luôn > 0 )
d. \(\left(2;+\infty\right)\)
e. \(\left(-\infty;\dfrac{5}{6}\right)\)
f. \(\left(2;+\infty\right)\)
g. \(\left(1;3\right)\)
h. \(\left(5;+\infty\right)\)
i. \(\left(1;+\infty\right)\)
k. \(\left(-\infty;2\right)\)
l. R/\(\left\{\pm3\right\}\)
m. \(\left(-2;+\infty\right)/\left\{3\right\}\)
\(x=\sqrt[3]{-\dfrac{3}{216}}=\dfrac{\sqrt[3]{-3}}{6}\)