K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2018

\(x^2+x=6\)

<=>  \(x^2+x-6=0\)

<=>   \(\left(x-2\right)\left(x+3\right)=0\)

tự lm tiếp

b)  \(6x^3+x^2=2x\)

<=>  \(6x^3+x^2-2x=0\)

<=>  \(x\left(6x^2+x-2\right)=0\)

<=>   \(x\left(2x-1\right)\left(3x+2\right)=0\)

tự giải ra

12 tháng 10 2018

a/\(x^2+x=6\)

\(x\left(x+1\right)=6\)

=> TH1 :x =0

     TH2 : x+1 =0  nên x = ( -1 )

b/\(6x^3+x^2=2x\)

\(6x^3+x^2-2x=0\)

\(2x\left(x-1\right)\left(x+1\right)=0\)

TH1 : 2x =0  nên x =0

TH2 : x-1 =0 nên x =1

TH2 : x+1 =0 nên x = (-1)

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

23 tháng 10 2016

bn ko bik lm hay sao, hay là bn chỉ đăng đề lên thôi

2 tháng 11 2016

sao nhìu... z p , đăq từq câu 1 thôy nha p

20 tháng 10 2016

Ôi trời sao lắm thế ít thôi bạn nên tách ra mà bạn cần gấp lắm à

20 tháng 10 2016

đúng rồi pn. giúp mik đc bài nào cũng đc

5 tháng 7 2018

\(a,\left(x+3\right)\left(x-3\right)-\left(x-2\right)\left(x+5\right)=6\)

\(\Leftrightarrow x^2-9-x^2-5x+2x+10=6\)

\(\Leftrightarrow-3x+1=6\Leftrightarrow x=\frac{-5}{3}\)

Vậy x =\(\frac{-5}{3}\)

\(b,\left(3x+2\right)\left(2x+9\right)-\left(x+2\right)\left(6x+1\right)=\left(x+1\right)-\left(x-6\right)\)

\(\Leftrightarrow6x^2+27x+4x+18-6x^2-x-12x-2=x+1-x+6\)

\(\Leftrightarrow18x+16=7\Leftrightarrow x=\frac{-1}{2}\)

Vậy x =\(\frac{-1}{2}\)

5 tháng 7 2018

a/ \(\left(x+3\right)\left(x-3\right)-\left(x-2\right)\left(x+5\right)=6\)

<=> \(x^2-9-\left(x^2+3x-10\right)=6\)

<=> \(x^2-9-x^2-3x+10=6\)

<=> \(-3x+1=6\)

<=> \(-3x=5\)

<=> \(x=-\frac{5}{3}\)

b/ \(\left(3x+2\right)\left(2x+9\right)-\left(x+2\right)\left(6x+1\right)=\left(x+1\right)-\left(x-6\right)\)

<=> \(6x^2+31x+18-\left(6x^2+13x+2\right)=x+1-x+6\)

<=> \(6x^2+31x+18-6x^2-13x-2=7\)

<=> \(18x+16=7\)

<=> \(18x=-9\)

<=> \(x=-\frac{1}{2}\)

14 tháng 9 2021

1) \(\dfrac{3x}{4x-8}\)

\(ĐKXĐ:4x-8\ne0\Leftrightarrow x\ne2\)

2) \(\dfrac{2x}{x^2-9}\)

\(ĐKXĐ:x^2-9\ne0\Leftrightarrow\)\(\left\{{}\begin{matrix}x\ne3\\x\ne-3\end{matrix}\right.\)

3) \(\dfrac{6}{x^3+1}=\dfrac{6}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(ĐKXĐ:\)\(x+1\ne0\Leftrightarrow x\ne-1\)

(do \(x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\))

4) \(\dfrac{6x^2}{x^2-2x+1}=\dfrac{6x^2}{\left(x-1\right)^2}\)

\(ĐKXĐ:x-1\ne0\Leftrightarrow x\ne1\)

5) \(\dfrac{x-2}{x^2+3}\)

Do \(x^2+3>0\forall x\in R\)

Vậy biểu thức trên xác định với mọi x

6) \(\dfrac{2x}{x^2+3x+2}=\dfrac{2x}{\left(x+1\right)\left(x+2\right)}\)

\(ĐKXĐ:\)\(\left\{{}\begin{matrix}x+1\ne0\\x+2\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\x\ne-2\end{matrix}\right.\)

15 tháng 6 2016

a) x^2+5x+6-x^2+7x-10-6=0

12x-10=0

12x=10

x=5/6

15 tháng 6 2016

Cậu ơi giúp mình 2 câu dưới nữa ược không?

b: =x-2

d: \(=-x^3+\dfrac{3}{2}-2x\)

22 tháng 7 2019

a. x.(x+3)-x2+15=0

=> x^2 + 3x - x^2 + 15 = 0

=> 3x + 15 = 0

=> 3x = -15

=> x = -5

vậy_

b. (2x-1)(x+3) - x(2x-6) =15

=> 2x^2 + 6x - x - 3 - 2x^2 + 6x = 15

=> x - 3 = 15

=> x = 18

vậy_

c. x3 -36x = 0

=> x(x^2 - 36) = 0

=> x = 0 hoặc x^2 - 36 = 0

=> x = 0 hoặc x^2 = 36

=> x = 0 hoặc x = 6 hoặc x = -6

vậy_

d. 6x2 + 6x =x2+2x+1

=> 6x(x + 1) = (x + 1)^2

=> 6x(x + 1) - (x + 1)^2 = 0

=> (x + 1)(6x - x - 1) = 0

=> (x + 1)(5x - 1) = 0

=> x = -1 hoặc 5x = 1

=> x = -1 hoặc x = 1/5

vậy_

e. x(3x+1)=1-9x2 

=> x(3x + 1) = (1 - 3x)(1 + 3x)

=> x(3x + 1) - (1 - 3x)(1 + 3x) = 0

=> (3x + 1)(x - 1 + 3x) = 0

=> (3x + 1)(4x - 1) = 0

=> 3x + 1 = 0 hoặc 4x - 1 = 0

=> 3x = -1 hoặc 4x = 1

=> x = -1/3 hoặc x = 1/4

vậy_

a: \(\dfrac{1}{x-1}-\dfrac{x^3-x}{x^2+1}\cdot\left(\dfrac{x}{x^2-2x+1}-\dfrac{1}{x^2-1}\right)\)

\(=\dfrac{1}{x-1}-\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\left(\dfrac{x}{\left(x-1\right)^2}-\dfrac{1}{\left(x-1\right)\left(x+1\right)}\right)\)

\(=\dfrac{1}{x-1}-\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\dfrac{x\left(x+1\right)-x+1}{\left(x-1\right)^2\cdot\left(x+1\right)}\)

\(=\dfrac{1}{x-1}-\dfrac{x}{x^2+1}\cdot\dfrac{x^2+x-x+1}{x-1}\)

\(=\dfrac{1-x}{x-1}=-1\)

b: \(\dfrac{x}{6-x}+\left(\dfrac{x}{\left(x-6\right)\left(x+6\right)}-\dfrac{x-6}{x\left(x+6\right)}\right):\dfrac{2x-6}{x^2+6x}\)

\(=\dfrac{x}{6-x}+\dfrac{x^2-\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\cdot\dfrac{x\left(x+6\right)}{2\left(x-3\right)}\)

\(=\dfrac{x}{6-x}+\dfrac{x^2-x^2+12x-36}{x-6}\cdot\dfrac{1}{2\left(x-3\right)}\)

\(=\dfrac{x}{6-x}+\dfrac{12\left(x-3\right)}{2\left(x-3\right)\left(x-6\right)}\)

\(=\dfrac{x}{6-x}+\dfrac{6}{x-6}=\dfrac{-x+6}{x-6}=-1\)