K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2023

bbbbbbbbbbbbffv

AH
Akai Haruma
Giáo viên
27 tháng 11 2023

Đề là $x(x+3)^3$ hay $x(x+3)^2$ hả bạn?

24 tháng 6 2018

a/ \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\)

<=> \(\left(2x+3\right)^2-\left(4x^2-1\right)=22\)

<=> \(\left(2x+3\right)^2-4x^2+1=22\)

<=> \(\left(2x+3-2x\right)\left(2x+3+2x\right)=21\)

<=> \(3\left(4x+3\right)=21\)

<=> \(4x+3=7\)

<=> \(4x=4\)

<=> \(x=1\)

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................

12 tháng 8 2015

1)a)3(2x-1)(3x-1)-(2x-3)(9x-1)=0

<=>18x2-15x+1-18x2+29x-3=0

<=>14x-2=0

<=>14x=2

<=>x=1/7

b)4(x+1)2+(2x-1)2-8(x-1)(x+1)=11

<=>4x2+8x+4+4x2-4x+1-8x2+8=11

<=>4x+13=11

<=>4x=11-13

<=>4x=-2

<=>x=-1/2

c)Sai đề phải là dấu - chứ không phải +

(x-3)(x2+3x+9)-x(x-2)(x+2)=1

<=>x3-27-x3+4x=1

<=>4x=1+27

<=>4x=28

<=>x=7

2)a)(2x-3y)(2x+3y)-4(x-y)2-8xy

=4x2-9y2-4x2+8xy-4y2-8xy

=-13y2

b)(x-2)3-x(x+1)(x-1)+6x(x-3)

=x3-6x2+12x+8-x3+x+6x2-18x

=8-5x

c)(x-2)(x2-2x+4)(x+2)(x2+2x+4)

=(x-2)(x2+2x+4)(x+2)(x2-2x+4)

=(x3-8)(x3+8)

=x6-64

14 tháng 9 2015

Nguyễn Diệu Thảo sap c hk **** cho  Moon Light

24 tháng 9 2020

a) (2x + 1)2 - 4(x + 2)2 = 99

=> 4x2 + 4x + 1 - 4(x2 + 4x + 4) = 99

=> 4x2 + 4x + 1 - 4x2 - 16x - 16 = 99

=> -12x = 114

=> x = -9,5

b) (x - 3)2 - (x - 4)(x + 8) = 1

=> x2 - 6x + 9 - (x2 + 4x - 32) = 1

=> x2 - 6x + 9 - x2 - 4x + 32 = 1

=> -10x = -40

=> x = 4

c) 3(x + 2)2 + (2x - 1)2 - 7(x - 3)(x + 3) = 36

=> 3(x2 + 4x + 4) + 4x2 - 4x + 1 - 7(x2 - 9) = 36

=> 3x2 + 12x + 12 + 4x2 - 4x + 1 - 7x2 + 63 = 36

=> 8x = -40

=> x = -5

24 tháng 9 2020

a) ( 2x + 1 ) - 4( x + 2 )2 = 99

<=> 4x2 + 4x + 1 - 4( x2 + 4x + 4 ) = 99

<=> 4x2 + 4x + 1 - 4x2 - 16x - 16 = 99

<=> -12x - 15 = 99

<=> -12x = 114

<=> x = -114/12 = -19/2

b) ( x + 3 )2 - ( x - 4 )( x + 8 ) = 1

<=> x2 + 6x + 9 - ( x2 + 4x - 32 ) = 1

<=> x2 + 6x + 9 - x2 - 4x + 32 = 1

<=> 2x + 41 = 1

<=> 2x = -40

<=> x = -20

c) 3( x + 2 )2 + ( 2x - 1 )2 - 7( x + 3 )( x - 3 ) = 36

<=> 3( x2 + 4x + 4 ) + 4x2 - 4x + 1 - 7( x2 - 9 ) = 36

<=> 3x2 + 12x + 12 + 4x2 - 4x + 1 - 7x2 + 63 = 36

<=> 8x + 76 = 36

<=> 8x = -40

<=> x = -5

4 tháng 8 2016

\(8x^3+\left(x+8\right)^2=8\left(x+2\right)\left(x^2-2x+4\right)\)

\(8x^3+x^2+2\times x\times8+8^2=8\left(x^3+2^3\right)\)

\(8x^3+x^2+16x+64+8x^2=8\left(x^3+8\right)\)

\(8x^3+x\times\left(x+16\right)+64=8x^3+64\)

\(8x^3-8x^3+64-64+x\times\left(x+16\right)=0\)

\(x\times\left(x+16\right)=0\)

TH1:

\(x=0\)

TH2:

\(x+16=0\)

\(x=-16\)

Vậy x = 0 hoặc x = -16

4 tháng 8 2016

\(8x^3+\left(x+8\right)^2=8\left(x+2\right)\left(x^2-2x+4\right)\)

\(\Leftrightarrow8x^3+x^2+16x+64=8\left(x^3+8\right)\)

\(\Leftrightarrow8x^3+x^2+16x+64=8x^3+64\)

\(\Leftrightarrow8x^3+x^2+16x+64-8x^3-64=0\)

\(\Leftrightarrow x^2+16x=0\)

\(\Leftrightarrow x\left(x+16\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x+16=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-16\end{array}\right.\)

4 tháng 8 2016

\(8x^3+\left(x+8\right)^2=8\left(x+2\right)\left(x^2-2x+4\right)\)
\(\Leftrightarrow8x^3+\left(x^2+16x+61\right)=8\left(x^3+2^3\right)\)
\(\Leftrightarrow8x^3+x^2+16x+61=8x^3+61\)
\(\Leftrightarrow8x^3+x^2+16x+61-8x^3-61=0\)
\(\Leftrightarrow x^2+16x=0\)
\(\Leftrightarrow x\left(x+16\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x+16=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-16\end{array}\right.\)
\(\text{Vậy x=0 hoặc x=-16 }\)

21 tháng 9 2020

P/S : Câu 2,3 kết quả bằng bao nhiêu mới tìm được x ?

1.\(\left(2x-7\right)^2-4\left(x-3\right)=5\)

=> \(\left(2x\right)^2-2\cdot2x\cdot7+7^2-4x+12=5\)

=> \(4x^2-28x+49-4x+12=5\)

=> \(4x^2-32x+61=5\)

=> \(4x^2-32x+61-5=0\)

=> \(4x^2-32x+56=0\)

=> \(4\left(x^2-8x+14\right)=0\)

=> \(x^2-8x+14=0\)

=> \(\orbr{\begin{cases}x=4-\sqrt{2}\\x=\sqrt{2}+4\end{cases}}\)

4.\(\left(3x-1\right)^2-6\left(x-1\right)\left(x+1\right)-3x\left(x-2\right)=7\)

=> \(\left(3x\right)^2-2\cdot3x\cdot1+1^2-6\left(x^2-1\right)-3x^2+6x=7\)

=> \(9x^2-6x+1-6x^2+6-3x^2+6x=7\)

=> \(\left(9x^2-6x^2-3x^2\right)+\left(-6x+6x\right)+\left(1+6\right)=7\)

=> 7 = 7(đúng)

5. \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)

=> \(x^2+2\cdot x\cdot3+3^2-x\left(x+8\right)+4\left(x+8\right)=1\)

=> x2 + 6x + 9 - x2 - 8x + 4x + 32 = 1

=> (x2 - x2) + (6x - 8x + 4x) + (9 + 32) = 1

=> 2x + 41 = 1

=> 2x = -40

=> x = -20