Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2 -6x +10 = x^2 -2.x.3 +3^2 +1 = (x-3)^2 +1
Ma (x-3)^2 >=0 <=> (x-3)^2 +1 >=1>0 (voi moi x)
b) 4x - x^2 -5 = -(x^2 -4x +5) =-[(x^2 -4x +4)+1] = -[(x-2)^2 +1]
Ma (x+2)^2 >=0 <=> (x-2)^2 +1 >=1 <=> -[(x-2)^2 +1] <=-1 => -[(x-2)^2 +1] <0
2) a) P= x^2 -2x +5 = x^2 -2x +1 +4 = (x-1)^2 +4
Ta co: (x-1)^2 >=0 <=> (x-1)^2 +4 >=4
Vay gia tri nho nhat P=4 khi x=1
b) Q= 2x^2 -6x = 2(x^2 -3x) = 2(x^2 - 2.x.3/2 + 9/4 -9/4)= 2[(x-3/2)^2 -9/4]
Ta co: (x-3/2)^2 >=0 <=>(x-3/2)^2 -9/4 >= -9/4 <=> 2[(x-3/2)^2 -9/4] >= -9/2
Vay gia tri nho nhat Q= -9/2 khi x= 3/2
c) M= x^2 +y^2 -x +6y +10 = (x^2 -2.x.1/2 + 1/4) +(y^2 +2.y.3+9)+3/4
= ( x-1/2)^2 + (y+3)^2 +3/4
M>= 3/4
Vay GTNN cua M = 3/4 khi x=1/2 va y=-3
3)a) A= 4x - x^2 +3 = -(x^2 -4x -3) = -( x^2 -4x+4 -7) =-[(x-2)^2 -7]
Ta co: (x-2)^2>=0 <=> (x-2)^2 -7 >=-7 <=> -[(x-2)^2 -7] <=7
Vay GTLN A=7 khi x=2
b) B= x-x^2 = -(x^2 -2.x.1/2+1/4-1/4) = -[(x-1/2)^2 -1/4]
GTLN B= 1/4 khi x=1/2
c) N= 2x - 2x^2 -5 =-2( x^2 -x+5/2) = -2(x^2 - 2.x.1/2 +1/4 +9/4)
= -2[(x-1/2)^2 +9/4]
GTLN N= -9/2 khi x=1/2
1) \(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)
2) \(B=x^2+6x+11=\left(x+3\right)^2+2\ge2>0\left(\forall x\right)\)
3) \(C=4x^2+4x-2=\left(2x+1\right)^2-2\ge-2\) chưa chắc nhỏ hơn 0
4) \(D=-x^2-6x-11=-\left(x+3\right)^2-2\le-2< 0\left(\forall x\right)\)
5) \(E=-4x^2+4x-2=-\left(2x-1\right)^2-1\le-1< 0\left(\forall x\right)\)
1. \(A=x^2+2x+2=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(x+1\right)^2+1\ge1\)
=> Đpcm
2. \(B=x^2+6x+11=\left(x+3\right)^2+2\)
Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+2\ge2\)
=> Đpcm
3. \(C=4x^2+4x-2=-\left(4x^2-4x+2\right)\)
\(=-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x-\frac{1}{2}\right)^2+1\ge1\)
\(\Rightarrow-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\le1\)
=> Đpcm
4,5 làm tương tự
Bài 1.
a) ( 7x - 3 )2 - 5x( 9x + 2 ) - 4x2 = 18
<=> 49x2 - 42x + 9 - 45x2 - 10x - 4x2 = 18
<=> -52x + 9 = 18
<=> -52x = 9
<=> x = -9/52
b) ( x - 7 )2 - 9( x + 4 )2 = 0
<=> x2 - 14x + 49 - 9( x2 + 8x + 16 ) = 0
<=> x2 - 14x + 49 - 9x2 - 72x - 144 = 0
<=> -8x2 - 86x - 95 = 0
<=> -8x2 - 10x - 76x - 95 = 0
<=> -8x( x + 5/4 ) - 76( x + 5/4 ) = 0
<=> ( x + 5/4 )( -8x - 76 ) = 0
<=> \(\orbr{\begin{cases}x+\frac{5}{4}=0\\-8x-76=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{4}\\x=-\frac{19}{2}\end{cases}}\)
c) ( 2x + 1 )2 + ( 4x - 1 )( x + 5 ) = 36
<=> 4x2 + 4x + 1 + 4x2 + 19x - 5 = 36
<=> 8x2 + 23x - 4 - 36 = 0
<=> 8x2 + 23x - 40 = 0
=> Vô nghiệm ( lớp 8 chưa học nghiệm vô tỉ nghen ) :))
Bài 2.
a) x2 - 12x + 39 = ( x2 - 12x + 36 ) + 3 = ( x - 6 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )
b) 17 - 8x + x2 = ( x2 - 8x + 16 ) + 1 = ( x - 4 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )
c) -x2 + 6x - 11 = -( x2 - 6x + 9 ) - 2 = -( x - 3 )2 - 2 ≤ -2 < 0 ∀ x ( đpcm )
d) -x2 + 18x - 83 = -( x2 - 18x + 81 ) - 2 = -( x - 9 )2 - 2 ≤ -2 < 0 ∀ x ( đpcm )
Bài 1
\(A=x^2-6x+15=x^2-2.3.x+9+6=\left(x-3\right)^2+6>0\forall x\)
\(B=4x^2+4x+7=\left(2x\right)^2+2.2.x+1+6=\left(2x+1\right)^2+6>0\forall x\)
Bài 2
\(A=-9x^2+6x-2021=-\left(9x^2-6x+2021\right)=-\left[\left(3x-1\right)^2+2020\right]=-\left(3x-1\right)^2-2020< 0\forall x\)
a) Có x2-6x+10=(x2-2.x.3+32)+1=(x-3)2+1
Vì (x-3)2 ≥0 với mọi x
nên (x-3)2+1>0 với mọi x
b) Có 4x-x2-5=-(x2-4x+4)-1=-(x2-2.x.2+22)-1=-(x-2)2-1
Vì -(x-2)2≤0 với mọi x
nên -(x-2)2-1<0 với mọi x
c)Gỉa sử (x+5)(x-3)+20>0 là đúng thì
⇔x2-3x+5x-15+20>0
⇔x2+2x+5>0 ⇔(x2+2x.1+12)+4>0 ⇔(x+1)2+4>0
Vì (x+1)2 >=0 với mọi x
Nên (x+1)2+4>0 là đúng
Vậy (x+5)(x-3)+20>0 với mọi x
a)x2-6x+10
Ta có:x2-6x+10=x2-2.3x+9+1
=(x-3)2+1
Vì (x-3)2\(\ge\)0
Suy ra:(x-3)2+1\(\ge\)1(đpcm)
b)4x-x2-5
Ta có:4x-x2-5=-(x2-4x+5)
=-(x2-2.2x+4)-1
=-1-(x-2)2
Vì -(x-2)2\(\le\)0
Suy ra:-1-(x-2)2\(\le\)-1(đpcm)
a) \(x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1>0\) với mọi x
b) \(4x-x^2-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1< 0\) với mọi x
Bài 1:
Ta có:
VT=\(\left(a^2+b^2\right)\left(c^2+d^2\right)\)
=\(a^2c^2+a^2d^2+b^2c^2+b^2d^2\)
=\(\left(a^2c^2+2abcd+b^2d^2\right)+\left(a^2d^2-2abcd+b^2c^2\right)\)
=\(\left(ac+bd\right)^2+\left(ad-bc\right)^2\) = VP
Vậy đẳng thức được chứng minh
Bài 2:
a/P=\(x^2-2x+5\)
=\(\left(x^2-2x+1\right)+4\)
=\(\left(x-1\right)^2+4\)
Vì \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2+4\ge4\forall x\)
\(\Rightarrow P\ge4\forall x\)
Vậy GTNN của P là 4 khi \(\left(x-1\right)^2=0\) hay x=1
b/Q=\(2x^2-6x\)
=\(2\left(x^2-3x\right)\)
=\(2\left(x^2-3x+\dfrac{9}{4}-\dfrac{9}{4}\right)\)
=\(2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\)
Vì \(\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\Rightarrow2\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\forall x\)
\(\Rightarrow Q\ge-\dfrac{9}{2}\forall x\)
Vậy GTNN của Q là \(-\dfrac{9}{2}\) khi \(\left(x-\dfrac{3}{2}\right)^2=0\) hay \(x=\dfrac{3}{2}\)
c/\(M=x^2+y^2-x+6y+10\)
=\(x^2-x+\dfrac{1}{4}+y^2+6y+9+\dfrac{3}{4}\)
=\(\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)
Vì \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\\\left(y+3\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x,y\)
\(\Rightarrow M\ge\dfrac{3}{4}\forall x,y\)
Vậy GTNN của M là \(\dfrac{3}{4}\) khi \(\left(x-\dfrac{1}{2}\right)^2=0\) và \(\left(y+3\right)^2=0\) hay \(x=\dfrac{1}{2}\) và y = -3
Bài 3:
a/Đặt A=\(x^2-6x+10\)
A=\(x^2-6x+9+1=\left(x-3\right)^2+1\)
Vì \(\left(x-3\right)^2\ge0\forall x\Rightarrow\left(x-3\right)^2+1\ge1>0\forall x\)
\(\Rightarrow A>0\forall x\)
\(\Rightarrow x^2-6x+10>0\forall x\)
b/Đặt B=\(4x-x^2-5\)
B=\(-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\)
Vì \(\left(x-2\right)^2\ge0\forall x\Rightarrow-\left(x-2\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-2\right)^2-1\le-1< 0\forall x\)
\(\Rightarrow B< 0\forall x\)
\(\Rightarrow4x-x^2-5< 0\forall x\)
cho tớ hỏi là ở câu b, bài 2 í cậu lấy 9/4 ở đâu vậy ???
a) Ta có: \(x^2+4x+4=x^2-6x+9\)
\(\Leftrightarrow4x+4=-6x+9\)
\(\Leftrightarrow4x+6x=9-4\)
\(\Leftrightarrow10x=5\)
hay \(x=\dfrac{1}{2}\)
b) Ta có: \(B=-x^2+2x-2\)
\(=-\left(x^2-2x+2\right)\)
\(=-\left(x^2-2x+1\right)-1\)
\(=-\left(x-1\right)^2-1< 0\forall x\)
Bài 1:
\(pt\Leftrightarrow10x=5\Leftrightarrow x=\dfrac{1}{2}\)
Vậy \(S=\left\{\dfrac{1}{2}\right\}\)
Bài 2:
\(B=x^2+2x-2\)
Lấy \(x=1\Rightarrow B=1>0\)
Vậy \(B=x^2+2x-2< 0\forall x\in R\) ( vô lí)