Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ đề = |x+1| + |x-1| (1)
+/ nếu x >1 thì x-1>0 và x+1>0
suy ra (1)=2x mà x>1 nên (1) > 2
+/ nếu -1>=x>=1 thì x-1<=0 và x+1>=0
suy ra (1)=2
+/ nếu x<1 thì x-1 và x+1 bé hơn hoặc bằng 2
suy ra (1)=-2x
mà x<1 nên (1)>2
vậy MIN=2 <=> -1<=x<=1
\(=\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-1\right)^2}\)
\(=\left|x+1\right| +\left|1-x\right|\ge\left|x+1+1-x\right|=2\)
Vậy giá trị nhỏ nhất bằng 2, với \(-1\le x\le1\)
Lời giải:
ĐK: $x+1>0$
Áp dụng BĐT AM-GM:
\(Q=\frac{x^2+2x+17}{2(x+1)}=\frac{(x+1)^2+16}{2(x+1)}=\frac{x+1}{2}+\frac{8}{x+1}\geq 2\sqrt{\frac{x+1}{2}.\frac{8}{x+1}}=4\)
Vậy $Q_{\min}=4$.
Giá trị này đạt tại $\frac{x+1}{2}=\frac{8}{x+1}$
$\Rightarrow (x+1)^2=16$
$\Rightarrow x=3$
\(\dfrac{2\sqrt{x}}{2x+1}\le\dfrac{2\sqrt{x}}{2\sqrt{2x.1}}=\dfrac{\sqrt{2}}{2}\)
Dấu "=" xảy ra khi \(x=\dfrac{1}{2}\)