Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(2020) = 20206 - 2021 × 20205 + 2021 × 20204 - 2021×20203 + 2021×20202 - 2021 × 2020 + 2021 = 1
Chúc bn học tốt !!!!!!!
Ta có : \(x=2022\Rightarrow x-1=2021\)
hay \(B=x^{10}-\left(x-1\right)x^9-\left(x-1\right)x^8-...-\left(x-1\right)x^2-\left(x-1\right)x+5\)
\(=x^{10}-x^{10}+x^9-x^9+x^8-...-x^3+x^2-x^2+x+5\)
\(=x+5\Rightarrow B=2022+5=2027\)
Vậy với x = 2022 thì B = 2027
Em tách ra thành:
x(1+3+5+...+2021)-x(2+4+...+2020)=2022.
Sau đó giải bình thường.
Chúc em học tốt!
Vì \(\left(2x-5\right)^{2020}\ge0\forall x\); \(\left(5y+1\right)^{2022}\ge0\forall y\)
\(\Rightarrow\left(2x-5\right)^{2020}+\left(5y+1\right)^{2022}\ge0\forall x,y\)
mà \(\left(2x-5\right)^{2020}+\left(5y+1\right)^{2022}\le0\)( giả thuyết )
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-5=0\\5y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=5\\5y=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{-1}{5}\end{cases}}\)
Vậy \(x=\frac{5}{2}\)và \(y=\frac{-1}{5}\)
( 2x - 5 )2020 + ( 5y + 1 )2022 ≤ 0
Ta có : ( 2x - 5 )2020 ≥ 0 ∀ x
( 5y + 1 )2022 ≥ 0 ∀ y
=> ( 2x - 5 )2 + ( 5y + 1 )2022 ≥ 0 ∀ x, y
Kết hợp với đề bài => Chỉ xảy ra trường hợp ( 2x - 5 )2020 + ( 5y + 1 )2022 = 0
Khi đó \(\hept{\begin{cases}2x-5=0\\5y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{1}{5}\end{cases}}\)
\(x^2\)\(+x-2022x-2022=0\)
\(x\left(x-2022\right)\)\(+\left(x-2022\right)\)\(=0\)
\(\left(x-2022\right)\)\(\left(x+1\right)\)\(=0\)
\(=>TH1:x-2022=0\)
\(=>x=2022\)
\(TH2:x-1=0\)
\(=>x=-1\)
Đặt A(x)=x2−2021x+2020=0A(x)=x2−2021x+2020=0
⇔x2−2020x−x+2020=0⇔x2−2020x−x+2020=0
⇔x(x−1)−2020(x−1)=0⇔x(x−1)−2020(x−1)=0
⇔(x−2020)(x−1)=0⇔x=\orbr{x=2020x=1⇔(x−2020)(x−1)=0⇔x=\orbr{x=2020x=1
Vậy nghiệm của phương trình là x = 1 ; x = 2020