Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
$(y+\frac{1}{3})+(y+\frac{1}{9})+(y+\frac{1}{27})+(y+\frac{1}{81})=\frac{56}{81}$
$(y+y+y+y)+(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81})=\frac{56}{81}$
$4\times y+\frac{40}{81}=\frac{56}{81}$
$4\times y=\frac{56}{81}-\frac{40}{81}=\frac{16}{81}$
$y=\frac{16}{81}:4=\frac{4}{81}$
Bài 2:
$18: \frac{x\times 0,4+0,32}{x}+5=14$
$18: \frac{x\times 0,4+0,32}{x}=14-5=9$
$\frac{x\times 0,4+0,32}{x}=18:9=2$
$x\times 0,4+0,32=2\times x$
$2\times x-x\times 0,4=0,32$
$x\times (2-0,4)=0,32$
$x\times 1,6=0,32$
$x=0,32:1,6=0,2$
Tham khảo link: https://olm.vn/hoi-dap/detail/55111422944.html
`(x+1/3)+(x+1/9)+(x+1/27)+(x+1/81)=56/81`
`x+x+x+x+1/3+1/9+1/27=56/81-1/81`
`4x+13/27=55/81`
`4x=55/81-13/27`
`4x=55/81-52/81`
`4x=16/81`
`x=4/108`
Vậy `x=4/108`
\(A=\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}\\ \Rightarrow3A=1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\\ \Rightarrow3A-A=1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}-\dfrac{1}{3}-\dfrac{1}{9}-\dfrac{1}{27}-\dfrac{1}{81}-\dfrac{1}{243}-\dfrac{1}{729}\\ \Rightarrow2A=1-\dfrac{1}{729}\\ \Rightarrow2A=\dfrac{728}{729}\\ \Rightarrow A=\dfrac{364}{729}\)
\(A=1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}\)
\(3A=3+1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\)
\(3A-A=\left(3+1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\right)-\left(1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}\right)\)
\(2A=3-\dfrac{1}{729}=\dfrac{2186}{729}\)
\(A=\dfrac{2186}{729}\div2=\dfrac{1093}{729}\)
A = \(1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}\)
3A = \(3+1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\)
3A - A = ( \(3+1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\) ) - ( \(1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}\) )
2A = 3 - \(\dfrac{1}{729}=\dfrac{728}{729}\)
A = \(\dfrac{728}{729}:2=\dfrac{364}{729}\)
a) \(\Leftrightarrow\dfrac{3}{2}:x=\dfrac{1}{2}\\ \Leftrightarrow x=\dfrac{3}{2}:\dfrac{1}{2}\\ \Leftrightarrow x=3\)
b) \(\Leftrightarrow x=\dfrac{7}{9}-\dfrac{2}{3}\\ \Leftrightarrow x=\dfrac{1}{9}\)
c) \(\Leftrightarrow x=\dfrac{8}{7}:\dfrac{6}{7}\\ \Leftrightarrow x=\dfrac{4}{3}\)
d) \(\Leftrightarrow x=\dfrac{9}{5}-\dfrac{3}{7}\\ \Leftrightarrow x=\dfrac{48}{35}\)
a) x = 3
b) x = \(\dfrac{1}{9}\)
c) x = \(\dfrac{4}{3}\)
d)\(\dfrac{48}{35}\)
\(3S=241+81+27+9+...+\dfrac{1}{9}+\dfrac{1}{27}\)
\(2S=3S-S=241-\dfrac{1}{81}=\dfrac{241x81-1}{81}\)
\(\Rightarrow S=\dfrac{241x81-1}{2x81}\)
1 + 1/3 + 1/9 + 1/27 + 1/81
= 1 + (1/3 + 1/27) + (1/9 + 1/81)
= 1 + (9/27 + 1/27) + (9/81 + 1/81)
= 1 + 10/27 + 10/81
= 1 + 30/81 + 10/81
= 1 + 40/81
= 121/81
\(x+\dfrac{40}{27}=2\)
\(x=\dfrac{14}{27}\)
\(x+1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}=2\)
\(\Leftrightarrow x+\dfrac{121}{81}=2\)
hay \(x=\dfrac{41}{81}\)