Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^3-x+3\right)=3\)
\(\Leftrightarrow2x^2+x-x^3-2x^2+x^3-x+3=3\)
\(\Leftrightarrow3=3\)( Luôn đúng với mọi x )
Vậy phương trình nghiệm đúng với mọi x
b) \(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x\left(x-1\right)=12x+12\)
\(\Leftrightarrow4x-24-2x^2-3x^3+5x^2-4x+3x^2-3x=12x+12\)
\(\Leftrightarrow-3x^3+6x^2-3x-24=12x+12\)
\(\Leftrightarrow-3x^3+6x^2-3x-24-12x-12=0\)
\(\Leftrightarrow-3x^3+6x^2-15x-36=0\)
Đến đây xem lại đề bạn nhớ :D Tìm thì tìm được nhưng thấy nó sai sai kiểu gì í
c) \(\left(3x+1\right)\left(x-2\right)=\left(2-x\right)\left(-3x-5\right)\)
\(\Leftrightarrow3x\left(x-2\right)+1\left(x-2\right)=2\left(-3x-5\right)-x\left(-3x-5\right)\)
\(\Leftrightarrow3x^2-6x+x-2=-6x-10+3x^2+5x\)
\(\Leftrightarrow3x^2-6x+x+6x-3x^2-5x=-10+2\)
\(\Leftrightarrow-4x=-8\)
\(\Leftrightarrow x=2\)
d) \(\left(x+3\right)\left(x+5\right)-x\left(x+7\right)=2x+8\)
\(\Leftrightarrow x\left(x+5\right)+3\left(x+5\right)-x\left(x+7\right)=2x+8\)
\(\Leftrightarrow x^2+5x+3x+15-x^2-7x=2x+8\)
\(\Leftrightarrow x^2+5x+3x-x^2-7x-2x=8-15\)
\(\Leftrightarrow-x=-7\)
\(\Leftrightarrow x=7\)
a, \(x\left(2x-1\right)-x^2\left(x+2\right)+\left(x^3-x+3\right)=3\)
\(\Leftrightarrow2x^2-x-x^3-2x^2+x^3-x+3=3\)
\(\Leftrightarrow-2x=0\Leftrightarrow x=0\)
b, \(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x\left(x-1\right)=12x+12\)
\(\Leftrightarrow4x-24-2x^2-3x^3+5x^2-4x+3x^2-3x=12x+12\)
\(\Leftrightarrow-3x-24+6x^2-3x^3=12x+12\)
\(\Leftrightarrow-15x-36+6x^2-3x^3=0\)
Lớp 8 chưa hc vô tỉ đâu ... vô nghiệm
c, \(\left(3x+1\right)\left(x-2\right)=\left(2-x\right)\left(-3x-5\right)\)
\(\Leftrightarrow3x^2-5x-2=-x-10+3x^2\)
\(\Leftrightarrow-4x+8=0\Leftrightarrow x=2\)
d, \(\left(x+3\right)\left(x+5\right)-x\left(x+7\right)=2x+8\)
\(\Leftrightarrow x^2+8x+15-x^2-7x=2x+8\)
\(\Leftrightarrow x+15=2x+8\Leftrightarrow-x+7=0\Leftrightarrow x=7\)
1) đặt 2x+1 = a => \(a^4-3a^2+2=\left(a^2-1\right)\left(a^2-2\right)=\)\(\left(a-1\right)\left(a+1\right)\left(a-\sqrt{2}\right)\left(a+\sqrt{2}\right)\)
=(2x+1-1)(2x+1+1)(2x+1-\(\sqrt{2}\))(2x+1+\(\sqrt{2}\)) = 4x(x+1)(2x+1-\(\sqrt{2}\))(2x+1+\(\sqrt{2}\))
2) =(x2-x)(x2-x-2)-3
đặt x2-x = b => b(b-2)-3 = b2-2b-3 = (b+1)(b-3) = (x2-x+1)(x2-x-3)
3) đặt x2+2x-1 = c => c2-3xc+2x2 = (c-x)(c-2x) = (x2+2x-1-x)(x2+2x-1-2x) = (x2+x-1)(x2-1) = (x2+x-1)(x-1)(x+1)
tìm x
x3-8 +(x-2)(x+1)=0 <=> (x-2)(x2+2x+4)+(x-2)(x+1)=0 <=>(x-2)(x2+2x+4+x+1)=0 <=> x=2 (vì x2+3x+5= (x+\(\frac{3}{2}\))2 +\(\frac{11}{4}\)>0)
vậy x=2
2) \(x\left(x-1\right)\left(x+1\right)\left(x-2\right)-3\)
\(=\left(x^2-x\right)\left(x^2-x-2\right)-3\)(1)
Đặt \(x^2-x=t\)
\(\Rightarrow\left(1\right)=t\left(t-2\right)-3=t^2-2t+1-4\)
\(=\left(t-1\right)^2-4\)
\(=\left(t+3\right)\left(t-5\right)\)
Thay \(x^2-x=t\), ta được:
\(BTDNT=\left(x^2-x+3\right)\left(x^2-x-5\right)\)
Bài 1: Đặt \(f\left(x\right)=\left(x^2+x+1\right)^{10}+\left(x^2-x+1\right)^{10}-2\)
Giả sử \(f\left(x\right)\)chia hết cho x-1
\(\Rightarrow f\left(x\right)=\left(x-1\right)q\left(x\right)\)
\(\Rightarrow f\left(1\right)=\left(1-1\right)q\left(1\right)\)
\(=0\)
\(\Leftrightarrow\left(1^2+1+1\right)^{10}+\left(1^2-1+1\right)^{10}-2=0\)
Mà \(\left(1^2+1+1\right)^{10}+\left(1^2-1+1\right)^{10}-2=59048\)
\(\Rightarrow\)mâu thuẫn
\(\Rightarrow f\left(x\right)\)không chia hết cho x-1 ( trái với đề bài )
Bài 2:
Vì \(x^4-x^3-3x^2+ax+b\)chia cho \(x^2-x-2\)dư \(2x-3\)
\(\Rightarrow\left(a-1\right)x+b-2=2x-3\)
Đồng nhất hệ số 2 vế ta được:
\(\hept{\begin{cases}a-1=2\\b-2=-3\end{cases}\Leftrightarrow}\hept{\begin{cases}a=3\\b=-1\end{cases}}\)
Vậy ...
Bài 3:
Vì \(P\left(x\right)\)chia \(x+3\)dư 1
\(\Rightarrow P\left(x\right)=\left(x+3\right)q\left(x\right)+1\)
\(\Rightarrow q\left(-3\right)=\left(-3+3\right)q\left(-3\right)+1\)
\(=1\left(1\right)\)
Vì \(P\left(x\right)\)chia \(x-4\)dư 8
\(\Rightarrow P\left(x\right)=\left(x-4\right)q\left(x\right)+8\)
\(\Rightarrow P\left(4\right)=\left(4-4\right)q\left(4\right)+8\)
\(=8\left(2\right)\)
Vì \(P\left(x\right)\)chia cho \(\left(x+3\right)\left(x-4\right)\)được thương là 3x và còn dư
\(\Rightarrow P\left(x\right)=\left(x+3\right)\left(x-4\right)3x+ax+b\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow\hept{\begin{cases}-3a+b=1\\4a+b=8\end{cases}\Leftrightarrow\hept{\begin{cases}-12a+3b=4\\12a+3b=24\end{cases}\Leftrightarrow}\hept{\begin{cases}b=4\\a=1\end{cases}\left(4\right)}}\)
Thay (4) vào (3) ta được:
\(P\left(x\right)=\left(x+3\right)\left(x-4\right)3x+x+4\)
\(\Leftrightarrow P\left(x\right)=3x^3-3x^2-20x+4\)
\(\Leftrightarrow16-3\left(x+1\right)< 24+2\left(x-1\right)\)
=>16-3x-3<24+2x-2
=>-3x+13<2x+22
=>-5x<9
hay x>-9/5
a: \(A=\dfrac{x+x-2-2x-4}{\left(x-2\right)\left(x+2\right)}\cdot\left(\dfrac{x+2-2x}{1-x}\right)\)
\(=\dfrac{-6}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{\left(x-2\right)}{x-1}\)
\(=\dfrac{-6}{\left(x+2\right)\left(x-1\right)}\)
b: Thay x=-4 vào A, ta được:
\(A=-\dfrac{6}{\left(-4+2\right)\left(-4-1\right)}=\dfrac{-6}{-2\cdot\left(-5\right)}=\dfrac{-6}{10}=\dfrac{-3}{5}\)
a VT=.\(\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\left(\frac{1}{x+1}-\frac{x}{1-x}+\frac{2}{x^2-1}\right)\)
=\(\frac{\left(x+1\right)^2-\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}:\frac{x-1+x\left(x-1\right)+2}{\left(x+1\right)\left(x-1\right)}\)
\(=\frac{x^2+2x+1-x^2+2x-1}{\left(x+1\right)\left(x-1\right)}.\frac{\left(x+1\right)\left(x-1\right)}{x^2+2x+1}\)
\(=\frac{4x}{\left(x+1\right)^2}\)=VP
b.VT\(=\frac{2+x}{2-x}.\frac{\left(2-x\right)^2}{4x^2}.\left(\frac{2}{2-x}-\frac{4}{\left(x+2\right)\left(x^2-2x+4\right)}.\frac{4-2x+x^2}{2-x}\right)\)
=\(\frac{4-x^2}{4x^2}.\left(\frac{2}{2-x}-\frac{4}{4-x^2}\right)=\frac{4-x^2}{4x^2}.\frac{2\left(2+x\right)-4}{4-x^2}\)
=\(\frac{2x}{4x^2}=\frac{1}{2x}\)=VP
c VT=.\(\left[\left(\frac{3}{x-y}+\frac{3x}{x^2-y^2}\right).\frac{\left(x+y\right)^2}{2x+y}\right].\frac{x-y}{3}\)
\(=\left[\frac{3\left(x+y\right)+3x}{\left(x+y\right)\left(x-y\right)}.\frac{\left(x+y\right)^2}{2x+y}\right].\frac{x-y}{3}\)
\(=\frac{3\left(2x+y\right)\left(x+y\right)^2}{\left(x+y\right)\left(x-y\right)\left(2x+y\right)}.\frac{x-y}{3}\)
\(=x+y=\)VP
Vậy các đẳng thức được chứng minh
=
\(=\left(x^2-1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\)
\(=\left(x^4-1\right)\left(x^4+1\right)\left(x^8+1\right)\)
\(=\left(x^8-1\right)\left(x^8+1\right)\)
\(=x^{16}-1\)