\(\ge\)0

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2018

TH1 x-1 ≥ 0

<=> x ≥ 1

4-x ≥ 0

<=> -x≥ -4 <=> x ≤ 4

TH2 x-1<0 <=> x<1

4-x<0 <=> -x<4 <=> x>4

30 tháng 6 2018

thiếu vậy bn ơi ,

28 tháng 8 2017

mấy cái này đơn dãng vô cùng nhưng có đều bn ra đề dài quá nha

a) \(3x+4\ge7\Leftrightarrow3x\ge7-4\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\) vậy \(x\ge1\)

b) \(-5x+1< 11\Leftrightarrow-5x< 11-1\Leftrightarrow-5x< 10\Leftrightarrow x>\dfrac{10}{-5}\)

\(\Leftrightarrow x>-2\) vậy \(x>-2\)

c) \(\dfrac{5}{x-3}< 0\Leftrightarrow x-3< 0\Leftrightarrow x< 3\) vậy \(x< 3\)

d) \(\dfrac{-7}{2-x}\ge0\Leftrightarrow2-x\le0\Leftrightarrow x\ge2\) vậy \(x\ge2\)

e) \(x^2+4x>0\Leftrightarrow x\left(x+4\right)>0\) \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>0\\x+4>0\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x+4< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>0\\x>-4\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x< -4\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< -4\end{matrix}\right.\) vậy \(x>0\) hoặc \(x< -4\)

f) \(\dfrac{x-2}{x-6}< 0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-2>0\\x-6>0\end{matrix}\right.\\\left[{}\begin{matrix}x-2< 0\\x-6< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>2\\x>6\end{matrix}\right.\\\left[{}\begin{matrix}x< 2\\x< 6\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>6\\x< 2\end{matrix}\right.\)

vậy \(x>6\) hoặc \(x< 2\)

g) \(\left(x-1\right)\left(x+2\right)\left(3-x\right)< 0\Leftrightarrow-\left[\left(x-1\right)\left(x+2\right)\left(x-3\right)\right]< 0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x-3\right)>0\)

th1: 3 số hạng đều dương : \(\Leftrightarrow\left[{}\begin{matrix}x-1>0\\x+2>0\\x-3>0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>1\\x>-2\\x>3\end{matrix}\right.\) \(\Rightarrow x>3\)

th2: 2 âm 1 dương : (vì trong 3 số hạng ta có : \(\left(x+2\right)\) lớn nhất \(\Rightarrow\left(x+2\right)\) dương)

\(\Leftrightarrow\left[{}\begin{matrix}x-1< 0\\x+2>0\\x-3< 0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x< 1\\x>-2\\x< 3\end{matrix}\right.\) \(\Rightarrow-2< x< 1\)

vậy \(x>3\) hoặc \(-2< x< 1\)

h) \(\dfrac{x^2-1}{x}>0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x^2-1>0\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}x^2-1< 0\\x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x^2>1\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}x^2< 1\\x< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}-1< x< 1\\x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>1\\-1< x< 0\end{matrix}\right.\) vậy \(x>1\) hoặc \(-1< x< 0\)

i) \(x^2+x-2< 0\Leftrightarrow x^2+x+\dfrac{1}{4}-\dfrac{9}{4}< 0\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2-\dfrac{9}{4}< 0\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2< \dfrac{9}{4}\Leftrightarrow\dfrac{-3}{2}< \left(x+\dfrac{1}{2}\right)< \dfrac{3}{2}\Leftrightarrow-2< x< 1\)

vậy \(-2< x< 1\)

27 tháng 8 2017

Mysterious Person, Đoàn Đức Hiếu, Nguyễn Đình Dũng , ... giúp mình!

12 tháng 6 2017

a) \(\left(3-2x\right)\left(x+1\right)\ge0\)

TH1:\(\left\{{}\begin{matrix}3-2x\ge0\\x+1\ge0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\le1,5\\x\ge-1\end{matrix}\right.\)\(\Rightarrow-1\le x\le1,5\)

TH2:\(\left\{{}\begin{matrix}3-2x\le0\\x+1\le0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ge1,5\\x\le-1\end{matrix}\right.\)(vô lý)

Vậy.............................

b) \(\left(2x-4\right)\left(x+3\right)\le0\)

TH1:\(\left\{{}\begin{matrix}2x-4\ge0\\x+3\le0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ge2\\x\le-3\end{matrix}\right.\) (vô lý)

TH2: \(\left\{{}\begin{matrix}2x-4\le0\\x+3\ge0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\le2\\x\ge-3\end{matrix}\right.\)\(\Rightarrow-3\le x\le2\)

Vậy...............................

18 tháng 8 2019

\(a,\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)

\(\Rightarrow\left(x-1\right)^{x+2}\left[1-\left(x-1\right)^2\right]=0\)

\(\Rightarrow\orbr{\begin{cases}\left(x-1\right)^{x+2}=0\\1-\left(x-1\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x\left(2-x\right)=0\end{cases}}}\)

=> x=1 ; x=0 ; x=2

Vậy..

18 tháng 8 2019

Bài 1 : 

b) \(\left|x-3\right|=5\)

\(\Rightarrow\orbr{\begin{cases}x-3=-5\\x-3=5\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-2\\x=8\end{cases}}\)

Vậy x thuộc {-2; 8}

c) \(\left|2x+1\right|=x-8\)

\(\Rightarrow\orbr{\begin{cases}2x+1=-x+8\\2x+1=x-8\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}3x=7\\x=-9\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{7}{3}\\x=-9\end{cases}}\)

Vậy x thuộc {-9; 7/3}

Câu c) tớ không chắc, thông cảm.

=))

27 tháng 6 2018

1) |x|=x+2

=> \(\left[{}\begin{matrix}x=x+2\\x=-x-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}0=2\left(voli\right)\\2x=-2\Rightarrow x=-1\end{matrix}\right.\)

vậy x=-1

c;b tương tự

2) \(\left|x-\dfrac{3}{2}\right|=\left|\dfrac{5}{2}-x\right|\)

=> \(\left[{}\begin{matrix}x-\dfrac{3}{2}=\dfrac{5}{2}-x\\x-\dfrac{3}{2}=x-\dfrac{5}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=4\Rightarrow x=2\\0=-1\left(voli\right)\end{matrix}\right.\)

vậy x=2

5 tháng 7 2018

Cảm ơn bn nhìu nhoa

vuivuiyeu

a: \(\left(2x+3\right)\left(3x-5\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-5\ge0\\2x+3\le0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>=\dfrac{5}{3}\\x< =-\dfrac{3}{2}\end{matrix}\right.\)

b: \(\dfrac{x}{3-x}>-1\)

\(\Leftrightarrow\dfrac{x}{3-x}+1>0\)

\(\Leftrightarrow\dfrac{x+3-x}{3-x}>0\)

=>3-x>0

hay x<3

c: \(\dfrac{x-1}{x+5}\ge\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{x-1}{x+5}-\dfrac{3}{2}\ge0\)

\(\Leftrightarrow\dfrac{2x-2-3x-15}{2\left(x+5\right)}>=0\)

\(\Leftrightarrow\dfrac{x+17}{2\left(x+5\right)}< =0\)

=>-17<=x<-5

d: \(\dfrac{7}{4x^2-1}\ge0\)

=>4x2-1>0

=>(2x-1)(2x+1)>0

=>x>1/2 hoặc x<-1/2

 

1 tháng 8 2019

1.
a) \(\frac{11}{2}-\frac{2}{3}:\left|2x+-\frac{3}{2}\right|=3\)
               \(-\frac{2}{3}:\left|2x+-\frac{3}{2}\right|=3-\frac{11}{2}\)
               \(-\frac{2}{3}:\left|2x+-\frac{3}{2}\right|=-\frac{5}{2}\)
                          \(\left|2x+-\frac{3}{2}\right|=-\frac{2}{3}:\left(-\frac{5}{2}\right)\)
                          \(\left|2x+-\frac{3}{2}\right|=\frac{4}{15}\)
\(\Rightarrow\left|2x+-\frac{3}{2}\right|\in\text{{}\frac{4}{15};-\frac{4}{15}\)}
Nếu, \(2x+\left(-\frac{3}{2}\right)=\frac{4}{15}\)
                               \(2x=\frac{53}{30}\)
                                  \(x=\frac{53}{60}\)
Nếu, \(2x+\left(-\frac{3}{2}\right)=-\frac{4}{15}\)
                               \(2x=\frac{37}{30}\)
                                  \(x=\frac{37}{60}\)
Vậy \(x\in\text{{}\frac{53}{60};\frac{37}{60}\)}
b) \(\left|\frac{2}{7}x-\frac{1}{5}\right|-\left|-x+\frac{4}{9}\right|=0\)
    \(\left|\frac{2}{7}x-\frac{1}{5}\right|=\left|-x+\frac{4}{9}\right|\)
\(\Rightarrow\left|\frac{2}{7}x-\frac{1}{5}\right|\in\text{{}-x+\frac{4}{9};-\left(x+\frac{4}{9}\right)\)}
Nếu, \(\frac{2}{7}x-\frac{1}{5}=-x+\frac{4}{9}\)
                          \(x=\frac{203}{405}\)
Nếu, \(\frac{2}{7}x-\frac{1}{5}=-\left(-x+\frac{4}{9}\right)\)
         \(\frac{2}{7}x-\frac{1}{5}=x-\frac{4}{9}\)
            \(\frac{2}{7}x-x=\frac{1}{5}-\frac{4}{9}\)
                 \(-\frac{5}{7}x=-\frac{11}{45}\)
                           \(x=\frac{77}{225}\)
Vậy \(x\in\text{{}\frac{203}{405};\frac{77}{225}\)}

b: \(\dfrac{2x+3}{3-x}\le0\)

\(\Leftrightarrow\dfrac{2x+3}{x-3}\ge0\)

=>x>3 hoặc x<=-3/2

c: \(\dfrac{x+5}{x+3}>1\)

\(\Leftrightarrow\dfrac{x+5-x-3}{x+3}>0\)

=>2/(x+3)>0

=>x+3>0

hay x>-3

19 tháng 3 2016

A             bạn ơi