\(^{2004}\)+ (x\(^2\)-1)\(^{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2018

Ta có \(\left(x-1\right)^{2004}+\left(x^2-1\right)^{2016}+\left|x^2-x\right|=0\)

=> \(\hept{\begin{cases}\left(x-1\right)^{2004}=0\\\left(x^2-1\right)^{2016}=0\\\left|x^2-x\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-1=0\\x^2-1=0\\x^2-x=0\end{cases}}\)

=> \(\hept{\begin{cases}x=1\\x\left(x-1\right)=0\end{cases}}\)=> \(\hept{\begin{cases}x=1\\x=0\end{cases}}\)(loại)

Vậy không có x thoả mãn điều kiện bài toán.

11 tháng 4 2018

2/ \(\left(x-1\right)^{2004}+\left(x^2-1\right)^{2016}+|x^2-x|\)

\(\left(x-1\right)^{2004}\ge0\forall x;\left(x^2-1\right)^{2016}\ge0\forall x;|x^2-x|\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^{2004}+\left(x^2-1\right)^{2016}+|x^2-x|\ge0\)

\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^{2004}=0\Rightarrow x-1=0\Rightarrow x=1\\\left(x^2-1\right)^{2016}=0\Rightarrow x-1=0\Rightarrow x=1\\|x^2-x|=0\Rightarrow x-x=0\Rightarrow x=1\end{cases}}\)

12 tháng 4 2018

bímậtnhé Sai rồi : 

Ta có : 

\(\left(x-1\right)^{2004}+\left(x^2-1\right)^{2016}+\left|x^2-x\right|=0\)

\(\hept{\begin{cases}\left(x-1\right)^{2004}=0\\\left(x^2-1\right)^{2006}=0\\\left|x^2-x\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1=0\\x^2-1=0\\x^2-x=0\end{cases}}}\)

+) Từ \(x-1=0\)\(\Rightarrow\)\(x=1\)

+) Từ \(x^2-1=0\)\(\Rightarrow\)\(x^2=1\)\(\Rightarrow\)\(\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

+) Từ \(x^2-x=0\)\(\Rightarrow\)\(x\left(x-1\right)=0\)\(\Rightarrow\)\(\orbr{\begin{cases}x=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)

Vậy \(x\in\left\{-1;0;1\right\}\)

Chúc bạn học tốt ~ 

25 tháng 8 2016

c)     <=>    \(\frac{x+1}{2016}+1+\frac{x+2}{2015}+1\)\(+\frac{x+3}{2014}+1\)=   \(\frac{x+4}{2013}+1+\frac{x+5}{2012}+1\)\(+\frac{x+6}{2011}\)

        <=>  \(\frac{x+1+2016}{2016}+\frac{x+2+2015}{2015}+\frac{x+3+2014}{2014}\)  \(=\frac{x+4+2013}{2013}+\frac{x+5+2012}{2012}+\frac{x+6+2011}{2011}\)

        <=>     \(\frac{x+2017}{2016}+\frac{x+2017}{2015}+\frac{x+2017}{2014}-\frac{x+2017}{2013}-\frac{x+2017}{2012}-\frac{x+2017}{2011}=0\)

      <=>       \(\left(x+2017\right)\left(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}-\frac{1}{2011}\right)=0\)

     vì    \(\left(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}-\frac{1}{2011}\right)\)khác 0    

   =>     \(x+2017=0\) =>   \(x=-2017\)

           Vậy \(S=\left\{-2017\right\}\)

11 tháng 9 2016

Sao ấn được phân soos vậy?

19 tháng 3 2018

e, \(x^7-80x^6+80x^5-80x^4+80x^3-80x^2+80x+15\)

đặt 80=x+1 ta đc

\(x^7-\left(x+1\right)x^6+\left(x+1\right)x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x+15=x^7-x^7-x^6+x^6+x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x+15=x+15=79+15=94\)

3 tháng 1 2019

Vì \(\left(x-2\right)^{2018}\ge0vs\forall x\) và \(\left(2y-1\right)^{2004}\ge0vs\forall y\)

\(\Rightarrow\left(x-2\right)^{2018}+\left(2y-1\right)^{2004}\ge0\)

Mà \(\left(x-2\right)^{2018}+\left(2y-1\right)^{2004}\le0\)     ( theo bài ra )

Suy ra : \(\left(x-2\right)^{2018}+\left(2y-1\right)^{2004}=0\)

\(\Rightarrow\hept{\begin{cases}\left(x-2\right)^{2018}=0\\\left(2y-1\right)^{2004}=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x-2=0\\2y-1=0\end{cases}}\)      \(\Rightarrow\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}\)

Vậy \(x=2;y=\frac{1}{2}\)

17 tháng 10 2019

1. a) Ta có: M  = |x + 15/19| \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19

Vậy MinM = 0 <=> x = -15/19

b) Ta có: N = |x  - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x

Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7

Vậy MinN = -1/2 <=> x = 4/7

17 tháng 10 2019

2a) Ta có: P = -|5/3 - x|  \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3

Vậy MaxP = 0 <=> x = 5/3

b) Ta có: Q = 9 - |x - 1/10| \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10

Vậy MaxQ = 9 <=> x = 1/10

2 tháng 8 2016

a)\(\frac{1}{4}-\frac{1}{3}x=\frac{2}{5}-\frac{3}{2}x\)

\(\Leftrightarrow\)\(\frac{15-20x}{60}=\frac{24-90x}{60}\)

\(\Leftrightarrow15-20x=24-90x\)

\(\Leftrightarrow-20x+90x=24-15\)

\(\Leftrightarrow70x=9\)

\(\Leftrightarrow x=\frac{9}{70}\)

 

c) (1/2-1/6)*3^x+4-4*3^x=3^16-4*3^13

=1/3*3^x*3^4-4*3^x=3^13*3^3-4*3^13

=27*3^x-4*3^x=3^13*(27-4)

=3^x*(27-4)=3^13*(27-4)

=>x=13

26 tháng 2 2020

                                                      Bài giải

a, Đặt \(\frac{x}{2}=\frac{y}{5}=k\text{ }\Rightarrow\text{ }\hept{\begin{cases}x=2k\\y=5k\end{cases}}\text{ }\Rightarrow\text{ }x\cdot y=2k\cdot5k=10k^2=90\text{ }\Rightarrow\text{ }k^2=9\text{ }\Rightarrow\text{ }k=\pm3\)

\(\Rightarrow\text{ }\hept{\begin{cases}x=2\cdot\left(-3\right)=-6\\y=5\cdot\left(-3\right)=-15\end{cases}}\) hoặc \(\hept{\begin{cases}x=2\cdot3=6\\y=5\cdot3=15\end{cases}}\)

Vậy \(\left(x\text{ ; }y\right)=\left(-3\text{ ; }-15\right)\text{ ; }\left(6\text{ ; }15\right)\)

b, Do \(\hept{\begin{cases}\left(x-\frac{1}{5}\right)^{2004}\ge0\\\left(y+0,4\right)^{100}\ge0\\\left(z-3\right)^{678}\ge0\end{cases}}\text{ mà }\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\)

\(\Rightarrow\hept{\begin{cases}\left(x-\frac{1}{5}\right)^{2004}\ge0\\\left(y+0,4\right)^{100}\ge0\\\left(z-3\right)^{678}\ge0\end{cases}}\Rightarrow\hept{\begin{cases}\left(x-\frac{1}{5}\right)^{2004}=0\\\left(y+0,4\right)^{100}=0\\\left(z-3\right)^{678}=0\end{cases}}\Rightarrow\hept{\begin{cases}x-\frac{1}{5}=0\\y+0,4=0\\z-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{5}\\y=-0,4\\z=3\end{cases}}\)

Vậy \(x=\frac{1}{5}\text{ , }y=-0,4\text{ , }z=3\)

26 tháng 2 2020

a) ĐẶt \(\frac{x}{2}=\frac{y}{5}=k\)suy ra x=2k, y=5k

Mà x.y=90

suy ra 2k. 5k = 90 suy ra k2=9 suy ra k\(\in\){3;-3}

Với k=3 suy ra x=6, y=15

Với k = -3 suy ra x=-1; y=-15

b) Vì \(\left(x-\frac{1}{5}\right)^{2004}\ge0,\forall x\)

\(\left(y+0,4\right)^{100}\ge0,\forall y\)

\(\left(z-3\right)^{678}\ge0,\forall z\)

Suy ra \(\left(x-\frac{1}{5}\right)^{2004}\)+\(\left(y+0,4\right)^{100}\)+\(\left(z-3\right)^{678}\ge0;\forall x,y,z\)

suy ra \(\left(x-\frac{1}{5}\right)^{2004}=0\)và \(\left(y+0,4\right)^{100}=0\)và \(\left(z-3\right)^{678}=0\)

suy ra x=\(\frac{1}{5}\); y=-0,4 ; z=3