Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tích của bốn số \(x^2-11,x^2-8,x^2-5,x^2-2\) là số âm nên phải có một hoặc ba số âm
Ta có : \(x^2-11< x^2-8< x^2-5< x^2-2\).Xét hai trường hợp :
Trường hợp 1: Có một số âm,ba số dương :
\(x^2-11< 0< x^2-8\)=> \(8< x^2< 11\)=> \(x^2=9\)(do \(x\inℤ\)) => \(x=\pm3\)
Trường hợp 2: Có một số dương,ba số âm :
\(x^2-5< 0< x^2-2\)=> \(2< x^2< 5\)=> \(x^2=4\)(do \(x\inℤ\)) => \(x=\pm2\)
Vậy : ...
Theo bài ra ta có: ( x2 - 5)( x2 - 24) < 0
\(\Rightarrow\)\(\hept{\begin{cases}x^2-5< 0\\x^2-24>0\end{cases}}^{ }\Leftrightarrow\hept{\begin{cases}x^2< 5\\x^2>24\end{cases}}\)(loại)
\(\Rightarrow\hept{\begin{cases}x^2-24< 0\\x^2-5>0\end{cases}}\Leftrightarrow\)\(\hept{\begin{cases}x^2< 24\\x^2>5\end{cases}}\Leftrightarrow5< x^2< 24\)
Với x2= 9 \(\Rightarrow\)x = 3
Với x2 = 16 \(\Rightarrow\)x = 4
Vậy x = 3 hoặc x = 4
Ta thấy: x2-5 > x2-24
đồng thời x2 -5>0
x2-24<0 => đồng thời x2 > 5
x2<24 => đồng thời x> căn 5
x< căn 24 => căn 5<x<căn 24
Ta thấy : \(x^3+5\) < \(x^3+10\) < \(x^3+15\) < \(x^3+30\)
Nếu có 1 thừa số âm : \(x^3+5
Để (x3 + 5) . (x3 + 10) . (x3 + 15) x (x3 + 30) < 0
Mà x3 + 5 < x3 + 10 < x3 + 15 < x3 + 30 nên
<=> x3 + 5 < 0 => x3 < -5 => x \(\le\) -2
hoặc x3 + 5 < 0 và x3 + 10 < 0 và x3 + 15 < 0
=> x3 + 15 < 0 => x3 < -15 => x \(\le-3\)
Vậy \(x\le2\) với \(x\in Z\)
Bài 1: <Cho là câu a đi>:
a. \(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow\frac{1}{x+1}=1-\frac{49}{50}=\frac{1}{50}\)
\(\rightarrow x+1=50\rightarrow x=49\)
Vậy x = 49.
\(\left(x^2.y\right)^5.\left(x^2.y^2\right)^7.\left(x.y^2\right)^6.x^3\)
\(=x^{10}.y^5.x^{14}.y^{14}.x^6.y^{12}.x^3\)
\(=x^{33}.y^{31}\)
xảy ra 2 t/hợp:
+nếu x-5=0=>x=5
+nếu x+6=0=>x=-6
vì x thuộc z nên x={5,-6}
\(\left(x-5\right)\times\left(x+6\right)=0\)
\(\Rightarrow x-5=0\)hoặc \(x+6=0\)
+> TH1:
\(x-5=0\)
\(x=0+5\)
\(x=5\)
+> TH2:
\(x+6=0\)
\(x=0-6\)
\(x=-6\)
Vậy x = 5 hoặc x = -6 .