Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{8}\left(x< y\right)\)
Đặt \(x=\frac{1}{2}y\)
Ta có: x là 1 phần , y là 2 phần
Ta có sơ đồ:
x: I--------------------I Vì \(\frac{1}{x}+\frac{1}{y}=\frac{1}{8}\Rightarrow x+y=8\)
y: I--------------------I--------------------I
Áp dụng tổng số phần bằng nhau đã học ở lớp 5:
1 + 2 = 3 phần
Suy ra x = 8 : 3 x 1 = 2.6
Suy ra y = 8 - 2.6 = 5.4
Quy ra phần số: \(\frac{1}{x}=\frac{1}{2.6}=\frac{5}{13}\)( 1 : 2,6 = 5/13)
Quy ra phân số: \(\frac{1}{y}=\frac{1}{5.4}=\frac{5}{27}\)( 1 : 5,4 = 5/27)
\(\Rightarrow\orbr{\begin{cases}x=13\\y=27\end{cases}}\) (vì x và y đều là mẫu của phân số mà ta đã quy ra)
đúng rồi 100%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

a) \(\frac{1}{x}+\frac{y}{6}=\frac{1}{2}\)
\(\frac{1}{x}=\frac{1}{2}-\frac{y}{6}\)
\(\frac{1}{x}=\frac{3}{6}-\frac{y}{6}\)
\(\frac{1}{x}=\frac{3-y}{6}\)
\(\Rightarrow6=x.\left(3-y\right)\)
Lập bảng ta có :
3-y | 2 | 3 | -2 | -3 | 1 | 6 | -1 | -6 |
x | 3 | 2 | -3 | -2 | 6 | 1 | -6 | -1 |
y | 1 | 0 | 5 | 6 | 2 | -3 | 4 | 9 |
Vậy ...
b) tương tự câu a
c) \(\frac{x-1}{9}+\frac{1}{3}=\frac{1}{y+2}\)
\(\frac{x-1}{9}+\frac{3}{9}=\frac{1}{y+2}\)
\(\frac{x+2}{9}=\frac{1}{y+2}\)
\(\Rightarrow\left(x+2\right).\left(y+2\right)=9\)
x+2 | 3 | -3 | 1 | 9 | -1 | -9 |
y+2 | 3 | -3 | 9 | 1 | -9 | -1 |
x | 1 | -5 | -1 | 7 | -3 | -11 |
y | 1 | -5 | 7 | -1 | -11 | -3 |
Vậy ...
d) \(\frac{x}{3}-\frac{4}{y}=\frac{1}{5}\)
\(\frac{4}{y}=\frac{x}{3}-\frac{1}{5}\)
\(\frac{4}{y}=\frac{5x}{15}-\frac{3}{15}\)
\(\frac{4}{y}=\frac{5x-3}{15}\)
\(\Rightarrow4.15=y.\left(5x-3\right)\)
\(\Rightarrow60=y.\left(5x-3\right)\)
Lập bảng ta có :
nhiều tự làm

lm theo bài này :1/x + 1/y = 1/4
<=> 4/x + 4/y = 1
<=> 4x + 4y = xy
<=> xy - 4x - 4y + 16 = 16
<=> (x-4).(y-4) = 16
1/x + y/2 = 5/8
1/x + 4y/8 = 5/8
1/x = 5/8 - 4y/8
1/x = 5 - 4y/8
Vì y là số nguyên dương nên 4y là số nguyên dương. B( 4y ) < 5.
Vậy B( 4y ) = { 4 }
4y = 4
y = 4 : 4
y = 1
Ta có :
1/x = 5-4/8
1/x = 1/8
Vậy x = 8
Đ/S : y = 1
x = 8

a,\(\left(x-3\right).\left(2y+1\right)=7\)
Vì \(x;y\inℤ=>x-3;2y+1\inℤ\)
\(=>x-3;2y+1\inƯ\left(7\right)\)
Nên ta có bảng sau
x-3 | 1 | 7 | -7 | -1 |
2y+1 | 7 | 1 | -1 | -7 |
x | 4 | 10 | -4 | 2 |
y | 3 | 0 | -1 | -4 |
Vậy ...
b,\(A=-126-\left(4^2-5\right)^2+870:29\)
\(=-126-\left(16-5\right)^2+30\)
\(=-126-11^2+30\)
\(=-247+30=-217\)

Giải:
Ta có:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{2}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{6};\frac{y}{6}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{15}\)
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{4}=\frac{y}{6}=\frac{z}{15}=\frac{x+y+z}{4+6+15}=\frac{50}{25}=2\)
+) \(\frac{x}{4}=2\Rightarrow x=8\)
+) \(\frac{y}{6}=2\Rightarrow y=12\)
+) \(\frac{z}{15}=2\Rightarrow z=30\)
Vậy x = 8
y = 12
z = 30
\(\frac{x}{2}=\frac{y}{3};\frac{y}{2}=\frac{z}{5}\) và x + y + z =50
\(\frac{x}{4}=\frac{y}{6};\frac{y}{6}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{15}\)
Áp dụng dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}+\frac{y}{6}+\frac{z}{15}=\frac{50}{25}=2\)
=> x = 2.4 = 8
=> y = 2.6 = 12
=> z = 2.15 = 30
Vậy x = 8;y = 12;z = 30.

a) -3/4.x - x = 1
=> x.(-3/4 - 1) = 1
=> x . -7/4 = 1
=> x = 1 : -7/4
=> x = -4/7
b) x5 = (2.x)4
=> x5 = 24 . x4
=> x5 : x4 = 24
=> x5 - 4 = 16
=> x = 16
\(-\frac{3}{4}\cdot x-x=1\)
\(\Rightarrow x\left(-\frac{3}{4}-1\right)=1\)
\(\Rightarrow-\frac{7}{4}x=1\)
\(\Rightarrow x=-\frac{4}{7}\)
\(x^5=\left(2x\right)^4\)
\(\Rightarrow x^5=16x^4\)
\(\Rightarrow x^5-16x^4=0\)
\(\Rightarrow x^4.x-16x^4=0\)
\(\Rightarrow x^4\left(x-16\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^4=0\\x-16=0\end{cases}\Rightarrow}x=16\)
tích 2 biểu thức bằng 1, nên ta nghĩ ngay đến các cặp số nhân nhau bằng 1, đó là:
(1,1) và (-1,-1)
nhé bạn\(\overset{}{}\)
(2x+1)(y-5)=1
=>(2x+1;y-5)∈{(1;1);(-1;-1)}
=>(2x;y)∈{(0;6);(-2;4)}
=>(x;y)∈{(0;6);(-1;4)}