Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\cdot y=6\)
\(\Rightarrow\hept{\begin{cases}x=1\\y=6\end{cases}}\)hoặc \(\hept{\begin{cases}x=-1\\y=-6\end{cases}}\)
hoặc \(\hept{\begin{cases}x=6\\y=1\end{cases}}\)hoặc \(\hept{\begin{cases}x=-6\\y=-1\end{cases}}\)
hoặc \(\hept{\begin{cases}x=2\\y=3\end{cases}}\)hoặc \(\hept{\begin{cases}x=-2\\y=-3\end{cases}}\)
hoặc \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)hoặc \(\hept{\begin{cases}x=-3\\y=-2\end{cases}}\)
\(xy-x+2y=5\)
\(\Rightarrow xy-x+2y-2=3\)
\(\Rightarrow x\left(y-1\right)+2\left(y-1\right)=3\)
\(\Rightarrow\left(x+2\right)\left(y-1\right)=3\)
Xét ước nha
\(x\left(y+2\right)+y=1\)
\(\Rightarrow xy+2x+y=1\)
\(\Rightarrow xy+2x+y+2=3\)
\(\Rightarrow x\left(y+2\right)+1\left(y+2\right)=3\)
\(\Rightarrow\left(x+1\right)\left(y+2\right)=3\)
Xét ước
\(xy=x-y\)
\(\Rightarrow x-y-xy=0\)
\(\Rightarrow x-y-xy+1=1\)
\(\Rightarrow x\left(1-y\right)+1\left(1-y\right)=1\)
\(\Rightarrow\left(x+1\right)\left(1-y\right)=1\)
Xét ước
đề làm tìm số hữu tỉ x và y?
\(xy-x+2y=5\)
\(\Rightarrow x\left(y-1\right)+2\left(y-1\right)=3\)
\(\Rightarrow\left(x+2\right)\left(y-1\right)=3\)
\(\Rightarrow\left[\left(x+2\right);\left(y-1\right)\right]\inƯ\left(3\right)\)
Xét các trường hợp
\(x\left(y+2\right)+y=1\)
\(\Rightarrow xy+2x+y=1\)
\(\Rightarrow y\left(x+1\right)+2\left(x+1\right)=3\)
\(\Rightarrow\left(y+2\right)\left(x+1\right)=3\)
...
\(xy=x-y\)
\(\Rightarrow2xy=2x-2y\)
\(\Rightarrow2x=2xy+2y\)
\(\Rightarrow2x=2y\left(x+1\right)\)
\(\Rightarrow2\left(x+1\right)-2=2y\left(x +1\right)-2\)
\(\Rightarrow\left(2-2y\right)\left(x+1\right)=0\)
...
Theo cách nghĩ của mk, sai thì thôi, ko người nào đó lại...
\(3xy-4x+2y=1\Rightarrow x\left(3y-4\right)=1-2y\Rightarrow x=\dfrac{1-2y}{3y-4}\)
-Vì x,y nguyên nên \(\left(1-2y\right)⋮\left(3y-4\right)\)
\(\Rightarrow\left(3-6y\right)⋮\left(3y-4\right)\)
\(\Rightarrow\left(-6y+8-5\right)⋮\left(3y-4\right)\)
\(\Rightarrow-5⋮\left(3y-4\right)\)
\(\Rightarrow3y-4\inƯ\left\{-5\right\}\)
\(\Rightarrow3y-4\in\left\{1;5;-1;-5\right\}\)
\(\Rightarrow y\in\left\{3;1\right\}\)
*\(y=1\Rightarrow x=\dfrac{1-2.1}{3.1-4}=1\)
*\(y=3\Rightarrow x==\dfrac{1-2.3}{3.3-4}=-1\)
a) Ta có x.y = 6 và x > y. Với x > y, ta có thể giải quyết bài toán bằng cách thử các giá trị cho x và tìm giá trị tương ứng của y. - Nếu x = 6 và y = 1, thì x.y = 6. Điều này không thỏa mãn x > y. - Nếu x = 3 và y = 2, thì x.y = 6. Điều này thỏa mãn x > y. Vậy, một giải pháp cho phương trình x.y = 6 với x > y là x = 3 và y = 2. b) Ta có (x-1).(y+2) = 10. Mở ngoặc, ta có x.y + 2x - y - 2 = 10. Từ phương trình ban đầu (x.y = 6), ta có 6 + 2x - y - 2 = 10. Simplifying the equation, we get 2x - y + 4 = 10. Tiếp tục đơn giản hóa, ta có 2x - y = 6. c) Ta có (x + 1).(2y + 1) = 12. Mở ngoặc, ta có 2xy + x + 2y + 1 = 12. Từ phương trình ban đầu (x.y = 6), ta có 2(6) + x + 2y + 1 = 12. Simplifying the equation, we get 12 + x + 2y + 1 = 12. Tiếp tục đơn giản hóa, ta có x + 2y = -1. Vậy, giải pháp cho các phương trình là: a) x = 3, y = 2. b) x và y không có giá trị cụ thể. c) x và y không có giá trị cụ thể.
+) nếu x; y đều dương => x + y = 10
+) nếu x; y đều âm => - x + (- y) = 10 <=> x + y = -10
hc tốt
Xét 2 TH
TH1: /x/+/y/= 10
\(\Rightarrow\)x+y=10
TH2 : /x/+/y/=10
\(\Rightarrow\)-x + (-y) =10
\(\Rightarrow\)-x - -y = 10
=> - ( x+y ) = 10
=> x+y = -10
Vậy: x+y= -10 hoặc 10
\(\frac{12}{16}=-\frac{x}{4}=\frac{21}{y}=\frac{z}{-80}\)
Ta có : \(\frac{12}{16}=-\frac{x}{4}\Rightarrow16.-x=12.4\Rightarrow16.-x=48\)
\(\Rightarrow-x=3\Rightarrow x=-3\)
\(\frac{12}{16}=\frac{21}{y}\Rightarrow12.y=16.21\Rightarrow12.y=336\)
\(\Rightarrow y=28\)
\(\frac{12}{16}=\frac{z}{-80}\Rightarrow16.z=12.-80\Rightarrow16.z=-960\)
\(\Rightarrow z=60\)
Vậy x = - 3 ; y = 28 ; z = 60
Ta có:
\(\frac{12}{16}=\frac{-x}{4}=\frac{21}{y}=\frac{z}{-80}\)
\(\Leftrightarrow\frac{12}{16}=\frac{-x}{4}=\frac{21}{y}=\frac{-z}{80}\) (Chuyển mẫu âm thành dương)
\(\frac{-x}{4}=\frac{12}{16}=\frac{12:\left(-4\right)}{16:\left(-6\right)}=\frac{-3}{-4}=\frac{3}{4}\Rightarrow x=-3\) (Ta chuyển mẫu âm thành dương)
\(\frac{21}{y}=\frac{3}{4}=\frac{3.7}{4.7}=\frac{21}{28}\Rightarrow y=28\)
\(\frac{-z}{80}=\frac{21}{28}\) ( Vì 80 : 28 không hết) \(\Rightarrow z=\varnothing\)
\(\Rightarrow\hept{\begin{cases}-3\\28\\\varnothing\end{cases}}\)
vì (y+1) . (2x.3)=7
=>y+1 và 2x.3 \(\in\)Ư(7)={-7;-1;1;7}
vì 2x.3 \(⋮\) 3 mà -7;-1;1 và 7 không \(⋮\) 3 .
=> không tìm được cặp x,y thỏa mãn.
vậy không tìm được cặp x,y thỏa mãn.
chúc mừng năm mới, k nha.....
Ai giúp mừn vs .........HUHU
Ai tl nhanh và chính xác nhất mik sẽ k cko ng đó trong 3 câu hỏi sắp tới của mik !
Ta thấy:
Câu 1: \(xy-x+2y=5\)
\(\Rightarrow xy-x+2y-2=3\)
\(\Rightarrow x\left(y-1\right)+2\left(y-1\right)=3\)
\(\Rightarrow\left(x+2\right)\left(y-1\right)=3\)
Do \(x,y\in Z\) nên \(x+2,y-1\in Z\). Khi đó ta có bảng sau:
Câu 2: \(x\left(y+2\right)+y=1\)
\(\Rightarrow x\left(y+2\right)+\left(y+2\right)=3\)
\(\Rightarrow\left(x+1\right)\left(y+2\right)=3\)
Do \(x,y\in Z\) nên \(x+1,y+2\in Z\). Khi đó ta có bảng sau:
Câu 3: \(xy=x-y\)
\(\Rightarrow xy-x+y=0\)
\(\Rightarrow xy-x+y-1=-1\)
\(\Rightarrow x\left(y-1\right)+\left(y-1\right)=-1\)
\(\Rightarrow\left(x+1\right)\left(y-1\right)=-1\)
Do \(x,y\in Z\) nên \(x+1,y-1\in Z\). Khi đó ta có bảng sau: