Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì x,y là số nguyên dương mà \(x+1⋮y\)nên \(x+1\ge y\)(1)
Suy ra \(x+3\ge y+2\)(1)
Mặt khác \(y+2⋮x\)nên \(y+2\ge x\)(2)
Từ (1) và (2) suy ra \(x\le y+2\le x+3\)
Suy ra \(y+2=x\)hoặc \(y+2=x+1\)hoặc \(y+2=x+2\)hoặc \(y+2=x+3\)
+Với \(y+2=x\)mà \(x+1⋮y\)nên \(3⋮y\)mà y là số nguyên dương nên y = 1 hoặc y = 3
Nếu y = 1 thì x =3 ( thoả mãn )
Nếu y = 3 thì x = 5 ( thoả mãn )
+ Với \(y+2=x+1\)mà \(x+1⋮y\)nên \(y+2⋮y\)nên \(2⋮y\)mà y là số nguyên dương nên y =1 hoặc y =2
Nếu y =1 thì x = 2 ( không thoả mãn )
Nếu y = 2 thì x =3 ( không thoả mãn )
+Với \(y+2=x+2\)mà \(y+2⋮x\)nên \(y+2⋮y\)nên \(2⋮y\)mà y là số nguyên dương nên y = 1 hoặc y =2
Nếu y = 1 thì x= 1 ( thoả mãn )
Nếu y =2 thì x = 2 ( không thoả mãn )
+Với \(y+2=x+3\)mà \(y+2⋮x\)nên \(x+3⋮x\)nên \(3⋮x\)mà x là số nguyên dương nên x =1 hoặc x = 3
Nếu x = 1 thì y = 2 ( thoả mãn )
Nếu x = 3 thì y = 4 ( thoả mãn )
Kết luận....

Do vai trò bình đẳng của x, y, z trong phương trình,
trước hết ta xét x ≤ y ≤ z.
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z
=> xyz = x + y + z ≤ 3z => xy ≤ 3=> xy thuộc {1 ; 2 ; 3}.
Nếu xy = 1 => x = y = 1,
thay vào (2) ta có : 2 + z = z, vô lí.
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2,
thay vào (2), => z = 3.Nếu xy = 3,
do x ≤ y nên x = 1 và y = 3,
thay vào (2), => z = 2.
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3)

Chúng ta cần chứng minh các điều kiện sau cho các số nguyên dương \(x\) và \(y\) thỏa mãn \(x^{3} + 1\) chia hết cho \(y + 1\) và \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\).
Bài toán phần a)
Chứng minh rằng \(x^{3} + 1\) chia hết cho \(y + 1\).
Giải: Ta đã biết rằng \(x^{3} + 1\) chia hết cho \(y + 1\), tức là:
\(\frac{x^{3} + 1}{y + 1} \in \mathbb{Z} .\)
Ta có thể xem xét \(x^{3} + 1\) dưới dạng nhân tử:
\(x^{3} + 1 = \left(\right. x + 1 \left.\right) \left(\right. x^{2} - x + 1 \left.\right) .\)
Ta cần chứng minh rằng \(\left(\right. x + 1 \left.\right) \left(\right. x^{2} - x + 1 \left.\right)\) chia hết cho \(y + 1\). Điều này có nghĩa là \(y + 1\) là ước của \(x^{3} + 1\), hay là:
\(y + 1 \mid \left(\right. x + 1 \left.\right) \left(\right. x^{2} - x + 1 \left.\right) .\)
Giả sử rằng \(x^{3} + 1\) chia hết cho \(y + 1\), thì sẽ có một số \(k\) sao cho:
\(x^{3} + 1 = k \left(\right. y + 1 \left.\right) ,\)
tức là \(k\) là một số nguyên. Như vậy, \(x^{3} + 1\) chia hết cho \(y + 1\), và bài toán đã được chứng minh cho phần a.
Bài toán phần b)
Chứng minh rằng \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\).
Giải: Ta cần chứng minh rằng \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\), tức là:
\(\frac{x^{3} y^{3} - 1}{y + 1} \in \mathbb{Z} .\)
Ta có thể biến đổi \(x^{3} y^{3} - 1\) theo công thức phân tích đa thức:
\(x^{3} y^{3} - 1 = \left(\right. x y - 1 \left.\right) \left(\right. x^{2} y^{2} + x y + 1 \left.\right) .\)
Ta cần chứng minh rằng \(\left(\right. x y - 1 \left.\right) \left(\right. x^{2} y^{2} + x y + 1 \left.\right)\) chia hết cho \(y + 1\).
Giả sử rằng \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\), ta có:
\(x^{3} y^{3} - 1 = m \left(\right. y + 1 \left.\right) ,\)
với một số nguyên \(m\), do đó \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\).
Như vậy, ta đã chứng minh được rằng \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\), hoàn thành bài toán phần b.
Kết luận: Chúng ta đã chứng minh được rằng:
- a) \(x^{3} + 1\) chia hết cho \(y + 1\),
- b) \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\).

1. Vì 3\(⋮\)a-2
\(\Rightarrow\)a-2 thuộc Ư(3)
\(\Rightarrow\)a-2 thuộc {-1;-3;1;3}
\(\Rightarrow\)a thuộc {1;-1;3;5}
Theo mình nghĩ X=2 ,Y=1 , vì thay vào 1+3 =4 chia hết cho 2, và 2+2=4 chia het cho 1 , hãy tin vao mình :)))
mình ko biết làm . sao giờ ?