K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2015

Theo mình nghĩ X=2 ,Y=1 , vì thay vào 1+3 =4 chia hết cho 2, và 2+2=4 chia het cho 1 , hãy tin vao mình :)))

16 tháng 3 2016

mình ko biết làm . sao giờ ?

6 tháng 2 2018

Vì x,y là số nguyên dương mà \(x+1⋮y\)nên \(x+1\ge y\)(1)

Suy ra \(x+3\ge y+2\)(1)

Mặt khác \(y+2⋮x\)nên \(y+2\ge x\)(2)

Từ (1) và (2) suy ra \(x\le y+2\le x+3\)

Suy ra \(y+2=x\)hoặc \(y+2=x+1\)hoặc \(y+2=x+2\)hoặc \(y+2=x+3\) 

+Với \(y+2=x\)mà \(x+1⋮y\)nên \(3⋮y\)mà y là số nguyên dương nên y = 1 hoặc y = 3

Nếu y = 1 thì x =3 ( thoả mãn )

Nếu y = 3 thì x = 5 ( thoả mãn )

+ Với \(y+2=x+1\)mà \(x+1⋮y\)nên \(y+2⋮y\)nên \(2⋮y\)mà y là số nguyên dương nên y =1 hoặc y =2

Nếu y =1 thì x = 2 ( không thoả mãn )

Nếu y = 2 thì x =3 ( không thoả mãn )

+Với \(y+2=x+2\)mà \(y+2⋮x\)nên \(y+2⋮y\)nên \(2⋮y\)mà y là số nguyên dương nên y = 1 hoặc y =2

Nếu y = 1 thì x= 1 ( thoả mãn )

Nếu y =2 thì x = 2 ( không thoả mãn )

+Với \(y+2=x+3\)mà \(y+2⋮x\)nên \(x+3⋮x\)nên \(3⋮x\)mà x là số nguyên dương nên x =1 hoặc x = 3

Nếu x = 1 thì y = 2 ( thoả mãn )

Nếu x = 3 thì y = 4 ( thoả mãn )

Kết luận....

7 tháng 3 2021

Do vai trò bình đẳng của x, y, z trong phương trình,

trước hết ta xét x ≤ y ≤ z.

Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z

=> xyz = x + y + z ≤ 3z => xy ≤ 3=> xy thuộc {1 ; 2 ; 3}.

Nếu xy = 1 => x = y = 1,

thay vào (2) ta có : 2 + z = z, vô lí.

Nếu xy = 2, do x ≤ y nên x = 1 và y = 2,

thay vào (2), => z = 3.Nếu xy = 3,

do x ≤ y nên x = 1 và y = 3,

thay vào (2), => z = 2.

Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3)

7 tháng 3 2021

phần kia thì chịu :)

1 tháng 4

Chúng ta cần chứng minh các điều kiện sau cho các số nguyên dương \(x\)\(y\) thỏa mãn \(x^{3} + 1\) chia hết cho \(y + 1\)\(x^{3} y^{3} - 1\) chia hết cho \(y + 1\).

Bài toán phần a)

Chứng minh rằng \(x^{3} + 1\) chia hết cho \(y + 1\).

Giải: Ta đã biết rằng \(x^{3} + 1\) chia hết cho \(y + 1\), tức là:

\(\frac{x^{3} + 1}{y + 1} \in \mathbb{Z} .\)

Ta có thể xem xét \(x^{3} + 1\) dưới dạng nhân tử:

\(x^{3} + 1 = \left(\right. x + 1 \left.\right) \left(\right. x^{2} - x + 1 \left.\right) .\)

Ta cần chứng minh rằng \(\left(\right. x + 1 \left.\right) \left(\right. x^{2} - x + 1 \left.\right)\) chia hết cho \(y + 1\). Điều này có nghĩa là \(y + 1\) là ước của \(x^{3} + 1\), hay là:

\(y + 1 \mid \left(\right. x + 1 \left.\right) \left(\right. x^{2} - x + 1 \left.\right) .\)

Giả sử rằng \(x^{3} + 1\) chia hết cho \(y + 1\), thì sẽ có một số \(k\) sao cho:

\(x^{3} + 1 = k \left(\right. y + 1 \left.\right) ,\)

tức là \(k\) là một số nguyên. Như vậy, \(x^{3} + 1\) chia hết cho \(y + 1\), và bài toán đã được chứng minh cho phần a.

Bài toán phần b)

Chứng minh rằng \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\).

Giải: Ta cần chứng minh rằng \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\), tức là:

\(\frac{x^{3} y^{3} - 1}{y + 1} \in \mathbb{Z} .\)

Ta có thể biến đổi \(x^{3} y^{3} - 1\) theo công thức phân tích đa thức:

\(x^{3} y^{3} - 1 = \left(\right. x y - 1 \left.\right) \left(\right. x^{2} y^{2} + x y + 1 \left.\right) .\)

Ta cần chứng minh rằng \(\left(\right. x y - 1 \left.\right) \left(\right. x^{2} y^{2} + x y + 1 \left.\right)\) chia hết cho \(y + 1\).

Giả sử rằng \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\), ta có:

\(x^{3} y^{3} - 1 = m \left(\right. y + 1 \left.\right) ,\)

với một số nguyên \(m\), do đó \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\).

Như vậy, ta đã chứng minh được rằng \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\), hoàn thành bài toán phần b.

Kết luận: Chúng ta đã chứng minh được rằng:

  • a) \(x^{3} + 1\) chia hết cho \(y + 1\),
  • b) \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\).
2 tháng 9 2021

x^2 = -y^2 mod p,tức (-1/p) =1 tức p=1 mod 4

2 tháng 9 2021

Hoặc cả 2 x,y cùng chia hết cho p

8 tháng 9 2019

1.                   Vì 3\(⋮\)a-2

                      \(\Rightarrow\)a-2 thuộc Ư(3)

                       \(\Rightarrow\)a-2 thuộc {-1;-3;1;3}

                       \(\Rightarrow\)a thuộc {1;-1;3;5}