Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7\(x^2\)+\(3y^2+z^2-14x+2z-18y+35=0\)
\(\Leftrightarrow\left(7x^2-14x+7\right)+\left(3y^2-18y+27\right)+\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow7\left(x-1\right)^2+3\left(y-3\right)^2+\left(z+1\right)^2=0\)
mà \(\left(x-1\right)^2\ge0\forall x\);\(\left(y-3\right)^2\ge0\forall y\);\(\left(z+1\right)^2\ge0\forall z\)\(\Rightarrow\)phương trình có nghiệm khi đồng thời x-1=0;
y-3=0;z+1=0hay x=1;y=3;z=-1
Lời giải:
$(x-1)(x+1)=6y^2$
$\Leftrightarrow x^2-1=6y^2$
$\Rightarrow x^2=6y^2+1$ lẻ $\Rightarrow x$ lẻ.
Ta biết 1 scp khi chia cho 4 thì dư $0$ hoặc $1$. Vì $x$ là số lẻ nên $x^2$ là scp lẻ $\Rightarrow$ $x^2$ chia $4$ dư $1$
$\Rightarrow 6y^2=x^2-1\vdots 4$
$\Rightarrow y^2\vdots 2$
$\Rightarrow y$ chẵn. Mà $y$ là số nguyên tố nên $y=2$.
Khi đó $x^2=6y^2+1=6.2^2+1=25$
$\Rightarrow x=5$ (thỏa mãn)
$