Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-4}{y-3}=\frac{4}{3}\)
\(\Rightarrow\left(x-4\right).3=\left(y-3\right).4\)
\(3x-12=4y-12\)
\(\Leftrightarrow3x=4y\)
\(\Rightarrow\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{4}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có:
\(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{4}}=\frac{x-y}{\frac{1}{3}-\frac{1}{4}}=\frac{5}{\frac{1}{12}}=5.12=60\)
\(\Rightarrow\hept{\begin{cases}x=60.\frac{1}{3}=20\\y=60.\frac{1}{4}=15\end{cases}}\)
Vậy x = 20 ; y = 15
x/y = 2/7
=> x . 7 = 2 . y
=> x thuộc { 2 ; -2 }
=> y thuộc { 7 ; -7 }
+> Nếu x = 2 thì y = 7
+>Nếu x = -2 thì y = -7
+> Nếu x = 2 thì y = -7
+> Nếu x = -2 thì y = 7
Vậy _____
Để \(\left(n+8\right)⋮\left(n+5\right)\) thì
\(\left(n+8\right)-\left(n+5\right)⋮\left(n+5\right)\)
\(\Rightarrow\)\(3⋮\left(n+5\right)\)
\(\Rightarrow\)\(\left(n+5\right)\inƯ\left(3\right)\)
\(\Rightarrow\)\(\left(n+5\right)\in\left(1;-1;3;-3\right)\)
\(\Rightarrow\)\(n\in\left(-4;-6;-2;-8\right)\)
Để \(\left(16-3n\right)⋮\left(n+4\right)\) thì
\(\left(16-3n\right)+\left(n+4\right)⋮\left(n+4\right)\)
\(\Rightarrow\)\(\left(16-3n\right)+3\left(n+4\right)⋮\left(n+4\right)\)
\(\Rightarrow\)\(16-3n+3n+12⋮\left(n+4\right)\)
\(\Rightarrow\)\(28⋮\left(n+4\right)\)
\(\Rightarrow\)\(\left(n+4\right)\inƯ\left(28\right)\)
\(\Rightarrow\)\(\left(n+4\right)\in\left\{\pm1;\pm2;\pm4;\pm7;\pm14;\pm28\right\}\)
\(\Rightarrow\)\(n\in\left\{-3;-4;-2;-6;0;-8;3;-11;10;-18;24;-32\right\}\)
\(-x-\frac{3}{4}=-\frac{8}{11}=>-x=-\frac{8}{11}+\frac{3}{4}=\frac{1}{44}=>x=-\frac{1}{44}\)
3200 = 32.100= ( 32)100
2300 = 23.100 = (23)100
Vì 32 > 23 nên (32)100 > ( 23)100 hay 3200> 2300
1) \(3^{200}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
Do 9^100 > 8^100 => 3^200 > 2^300
2) 4x+3 - 3.4x+1= 13.411
4x+1.42 - 3.4x+1= 13.411
4x+1 ( 42 - 3) = 13.411
4x+1 . 13 = 13. 411
4x+1 = 411
=> x + 1 = 11
=> x= 10
Bài làm:
Ta có: \(A=\frac{5}{4}\div\frac{a}{a+1}=\frac{5}{4}.\frac{a+1}{a}=\frac{5a+5}{4a}\)
\(\Rightarrow4A=\frac{20a+20}{4a}=5+\frac{5}{a}\)
Để 4A là số nguyên
=> \(\frac{5}{a}\inℤ\Rightarrow5⋮a\Rightarrow a\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Thử lại để A là số nguyên thì \(a\in\left\{-5;-1\right\}\)
\(a,\left(x+3\right)\left(y+2\right)=1\)
=> x+3 và y+2 thuộc UC(1)={1; -1}
x+3 | 1 | -1 |
x | -2 | -4 |
y+2 | 1 | -1 |
y | -1 | -3 |
Vậy x=-2; y=-4
x=-1; y=-4
Câu sau tương tự
\(a,\left(x+3\right)\left(y+2\right)=1\)
Th1 : \(\hept{\begin{cases}x+3=1\\y+2=1\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\y=-1\end{cases}}}\)
Th2 : \(\hept{\begin{cases}x+3=-1\\y+2=-1\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\y=-3\end{cases}}}\)
KL : \(\left\{\left(x=-2;y=-1\right);\left(x=-4;y=-3\right)\right\}\)
\(d,3x+4y-xy=16\)
\(=3x-xy+4y-12=4\)
\(\Rightarrow-x\left(y-3\right)+4\left(y-3\right)=4\)
\(\Rightarrow\left(y-3\right)\left(4-x\right)=4\)
Chia các trường hợp như câu a của chị ra em nhé
\(B=\frac{x-2}{x+1}\)
\(B=\frac{x+1-3}{x+1}\)
\(B=\frac{x+1}{x+1}-\frac{3}{x+1}\)
\(B=1-\frac{3}{x+1}\)
Để B nguyên \(\Rightarrow3⋮x+1\Rightarrow x+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow\orbr{\begin{cases}x+1=1\\x+1=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}}\)
hoặc
\(\Rightarrow\orbr{\begin{cases}x+1=3\\x+1=-3\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-4\end{cases}}}\)
Vậy x={0;-2;2;-4}
hok tốt!!
giúp mik ik ><