Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
olm sẽ hướng dẫn em làm bài này như sau:
Bước 1: em giải phương trình tìm; \(x\); y
Bước 2: thay\(x;y\) vào P
(\(x-1\))2022 + |y + 1| = 0
Vì (\(x-1\))2022 ≥ 0 ∀ \(x\); |y + 1| ≥ 0 ∀ y
⇒ (\(x\) - 1)2022 + |y + 1| = 0
⇔ \(\left\{{}\begin{matrix}\left(x-1\right)^{2022}=0\\y+1=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\) (1)
Thay (1) vào P ta có:
12023.(-1)2022 : )(2.1- 1)2022 + 2023
= 1 + 2023
= 2024
\(\left(x+3\right)^{2022}+\left(\sqrt{y-2}-1\right)^{2023}=0\) \(\left(ĐKXĐ: y\ge2\right)\)
Xét \(\left(x+3\right)^{2022}\ge0\forall x\)
\(\Rightarrow\left(\sqrt{y-2}-1\right)^{2023}\le0\)
\(\Leftrightarrow\sqrt{y-2}-1\le0\)
\(\Leftrightarrow\sqrt{y-2}\le1\)
\(\Leftrightarrow y-2\le1\)
\(\Rightarrow y\le3\)
\(\Rightarrow2\le y\le3\) mà \(y\in Z\)
\(\Rightarrow\left\{{}\begin{matrix}y=2\Leftrightarrow x=-2\\y=3\Leftrightarrow x=-3\end{matrix}\right.\)
Em không nghĩ câu này đúng. Anh giải thích hộ bạn đó với ạ.
C = 3 - 32 + 33 - 34 + 35 - 36 +...+ 323 - 324
3C = 32 - 33 + 34 - 35 + 36-...- 323 + 324 - 325
3C - C = -325 - 3
2C = -325 - 3
2C = - ( 325 + 3) = - [(34)6. 3 + 3] = - [\(\overline{...1}\)6.3+3] = -[ \(\overline{..3}\) + 3]
2C = - \(\overline{..6}\)
⇒ \(\left[{}\begin{matrix}C=\overline{..3}\\C=\overline{..8}\end{matrix}\right.\)
⇒ C không thể chia hết cho 420 ( xem lại đề bài em nhé)
b, (\(x+1\))2022 + (\(\sqrt{y-1}\) )2023 = 0
Vì (\(x+1\))2022 ≥ 0
\(\sqrt{y-1}\) ≥ 0 ⇒ (\(\sqrt{y-1}\))2023 ≥ 0
Vậy (\(x\) + 1)2022 + (\(\sqrt{y-1}\))2023 = 0
⇔ \(\left\{{}\begin{matrix}\left(x+1\right)^{2022}=0\\\sqrt{y-1}=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x+1=0\\y-1=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
Kết luận: cặp (\(x,y\)) thỏa mãn đề bài là:
(\(x,y\)) = (-1; 1)
\(\left(x-1\right)^2+\left(y+2\right)^2=0\)
Vì \(\left(x-1\right)^2\ge0\forall x\)
\(\left(y+2\right)^2\ge0\forall y\)
Nên \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\) \(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\y=-2\end{cases}}\)
Vậy x = 1 và y = -2
1: \(\dfrac{x-1}{3}=\dfrac{y-2}{4}=\dfrac{z+7}{5}\)
mà x+y-z=8
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{3}=\dfrac{y-2}{4}=\dfrac{z+7}{5}=\dfrac{x-1+y-2-z-7}{3+4-5}=\dfrac{8-3-7}{2}=\dfrac{-2}{2}=-1\)
=>\(\left\{{}\begin{matrix}x-1=-1\cdot3=-3\\y-2=-1\cdot4=-4\\z+7=-1\cdot5=-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-2\\y=-2\\z=-12\end{matrix}\right.\)
2: \(\dfrac{x+1}{3}=\dfrac{y+2}{-4}=\dfrac{z-3}{5}\)
mà 3x+2y=47-42=5
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x+1}{3}=\dfrac{y+2}{-4}=\dfrac{z-3}{5}=\dfrac{3x+3+2y+4}{3\cdot3+2\left(-4\right)}=\dfrac{5+7}{9-8}=12\)
=>\(\left\{{}\begin{matrix}x+1=12\cdot3=36\\y+2=-12\cdot4=-48\\z-3=12\cdot5=60\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=35\\y=-48-2=-50\\z=60+3=63\end{matrix}\right.\)
Trước hết ta thấy rằng nếu có một trong hai số x,y chẵn thì xy chẵn còn 2x+2y+1 là lẻ, do đó 2x+2y+1 không thể chia hết cho xy.
A = (\(x\) + 1)2022 + (\(\sqrt{y-1}\))2023 đkxđ : y - 1 ≥ 0 ⇒ y ≥ 1
⇔ (\(x\) + 1)2022 + (\(\sqrt{y-1}\))2023 = 0
vì (\(x\) + 1)2022 ≥ 0; \(\sqrt{y-1}\) ≥ 0 ⇒ (\(\sqrt{y-1}\))2023 ≥ 0
Nên A = 0 ⇔ \(\left\{{}\begin{matrix}x+1=0\\y-1=0\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
Nghiệm của A là: \(\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)