Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\hept{\begin{cases}x^2+xy+y^2=19\\x-xy+y=-1\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-xy=19\\x+y-xy=-1\end{cases}}\).
Suy ra \(\left(x+y\right)^2-\left(x+y\right)=20\).
Đăt \(x+y=1\) ta được
\(t^2-t=20\Leftrightarrow\left(t+4\right)\left(t-5\right)=0\) \(\Leftrightarrow\orbr{\begin{cases}t+4=0\\t-5=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}t=-4\\t=5\end{cases}}\).
Với \(t=-4\Rightarrow x+y=-4\)\(\Leftrightarrow y=-4-x\) ta có:
\(x-xy+y=x-x\left(-4-x\right)-4-x=-1\) \(=x^2+4x-4=-1\) \(\Leftrightarrow x^2+4x-3=0\)\(\Leftrightarrow\left(x+2\right)^2=7\)\(\Leftrightarrow\orbr{\begin{cases}x+2=\sqrt{7}\\x+2=-\sqrt{7}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-2+\sqrt{7}\\x=-2-\sqrt{7}\end{cases}}\).
Tương tự cho t = 5.
Bài 1:
$2x(x+3)+(2x+3)(5-x)=2$
$\Leftrightarrow 2x^2+6x+(10x-2x^2+15-3x)=2$
$\Leftrightarrow 2x^2+6x+7x-2x^2+15=2$
$\Leftrightarrow 13x+15=2$
$\Leftrightarrow 13x=2-15=-13$
$\Leftrightarrow x=-13:13=-1$
Bài 2:
$x-y=4\Rightarrow x=y+4$. Thay vào $xy=5$ thì:
$(y+4)y=5$
$\Leftrightarrow y^2+4y-5=0$
$\Leftrightarrow (y-1)(y+5)=0$
$\Leftrightarrow y=1$ hoặc $y=-5$
Nếu $y=1$ thì $x=y+4=5$. Khi đó $x^3+y^3=5^3+1^3=126$
Nếu $y=-5$ thì $x=y+4=-1$. Khi đó: $x^3+y^3=(-1)^3+(-5)^3=-126$
HD:
Dễ thấy b = 1, d = 2, e = 4 đặt y = x2 – 2 suy ra y2 = x4 – 4x2 + 4
Biến đổi P(x) = x4 – 4x2 + 4 – x3 – 6x2 + 2x
= (x2 – 2)2 – x(x2 – 2) – 6x2
Từ đó Q(y) = y2 – xy – 6x2
Tìm m, n sao cho m.n = - 6x2 và m + n = - x chọn m = 2x, n = -3x
Ta có: Q(y) = y2 + 2xy – 3xy – 6x2
= y(y + 2x) – 3x(y + 2x)
= (y + 2x)(y – 3x)
Do đó: P(x) = (x2 + 2x – 2)(x2 – 3x – 2).
a/ tìm GT của x+y biết x-y=2; x.y=99 và y<0
Vì x-y=2 nên
\(\Leftrightarrow\)
\(\Leftrightarrow\)
\(\Leftrightarrow\)
\(\Leftrightarrow\)
\(\Leftrightarrow\) x+y=20 hoặc x+y=-20
mà y<0 nên x+y=20
\(x^2+xy+y^2=0\)
\(\Leftrightarrow\left(x^2+xy+\frac{1}{4}y^2\right)+\frac{3}{4}y^2=0\)
\(\Leftrightarrow\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(x+\frac{1}{2}y\right)^2=0\\\frac{3}{4}y^2=0\end{cases}\Rightarrow x=y=0}\)
Lời giải:
$x^2+y^2+xy-x+y+1=0$
$\Leftrightarrow 2x^2+2y^2+2xy-2x+2y+2=0$
$\Leftrightarrow (x^2+2xy+y^2)+(x^2-2x+1)+(y^2+2y+1)=0$
$\Leftrightarrow (x+y)^2+(x-1)^2+(y+1)^2=0$
Vì $(x+y)^2, (x-1)^2, (y+1)^2\ge 0$ với mọi $x,y\in\mathbb{R}$
Do đó để tổng của chúng $=0$ thì $(x+y)^2=(x-1)^2=(y+1)^2=0$
$\Leftrightarrow x=1; y=-1$
TXD : \(\hept{\begin{cases}y\left(x+y\right)\ne0\\\left(x+y\right)x\ne0\\\left(x-y\right)\left(x+y\right)\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne y\\x\ne-y\\xy\ne0\end{cases}}}\)
Câu b :
\(A=\frac{xy-\left(x+y\right)y}{xy\left(x+y\right)}:\frac{y^2+x\left(x-y\right)}{x\left(x^2-y^2\right)}:\frac{x}{y}\)
\(=\frac{x^2-xy+y^2}{xy\left(x+y\right)}.\frac{x\left(x-y\right)\left(x+y\right)}{x^2-xy+y^2}.\frac{y}{x}\)\(=1-\frac{y}{x}\)
Để \(A>1\)mà \(y< 0\)nên \(x\)và \(y\)phải cùng dấu \(\Rightarrow x< 0\)
x - y = xy + 1
=> x - y - xy = 1
=> ( x - xy ) - y = 1
=> x . ( 1 - y ) + 1 - y - 1 = 1
=> x . ( 1 - y ) + ( 1 - y ) = 1 + 1
=> ( 1 - y ) . ( x + 1 ) = 2 = 1 . 2 = 2 . 1 = ( -1 ) . ( - 2 ) = ( -2 ) . ( -1 )
Phân ra 4 trường hợp và giải bình thường =))
x - y = xy +1 <=> x - y - xy = 1
=> x - xy + 1 - y = 1 + 1
=> x( 1 - y ) - ( 1 - y ) = 2
=> ( x - 1 )( 1 - y ) = 2 = 2.1 = 1.2 = (-1).(-2) = (-2).(-1) .
Ta có bảng sau :
Vậy tập nghiệm ( x ; y ) của phương trình là : ( 2 , -1 );( 3 , 0 );( 0 , 3 );( -1 , 2 ).
Đúng 100/100 .