Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}\dfrac{x^2.y^2}{10}=\dfrac{x^2-2y^2}{7}\\x^4.y^4=81\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7.x^2+7.y^2=10.x^2-20.y^2\\\left(x^2.y^2\right)^2=81\end{matrix}\right.\leftrightarrow\left\{{}\begin{matrix}3.x^2=27.y^2\\x^2.y^2=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=9.y^2\\x^2.y^2=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2=9.y^2\\9.y^2.y^2=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2=9.y^2\\\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\end{matrix}\right.\)
(+) \(\left[{}\begin{matrix}\left\{{}\begin{matrix}y=1\\x^2=9\end{matrix}\right.\\\left\{{}\begin{matrix}y=-1\\x^2=9\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=1\\x=-9\end{matrix}\right.\\\left\{{}\begin{matrix}y=1\\x=9\end{matrix}\right.\\\left\{{}\begin{matrix}y=-1\\x=-9\end{matrix}\right.\\\left\{{}\begin{matrix}y=-1\\x=9\end{matrix}\right.\end{matrix}\right.\)
Vậy y=1 , x=-9 y=1 , x=9
y=-1 , x=-9 y=-1 , x=9
Đặt \(x^2=a\)(a≥0),\(y^2=b\)(b≥0)
Ta có:\(\dfrac{a+b}{10}=\dfrac{a-2b}{7}vàa^2b^2=81\)
\(\dfrac{a+b}{10}=\dfrac{a-2b}{7}=\dfrac{\left(a+b\right)-\left(a-2b\right)}{10-7}=\dfrac{3b}{3}=b\)(1)
\(\dfrac{a+b}{10}=\dfrac{a-2b}{7}=\dfrac{2a+2b}{20}=\dfrac{\left(2a+2b\right)+\left(a-2b\right)}{20+7}=\dfrac{3a}{27}=\dfrac{a}{9}\left(2\right)\)
Từ (1) và (2) ⇒\(\dfrac{a}{9}=b\)⇒a=9b
Do \(a^2b^2=81nên\left(9b\right)^2b^2=81\)⇒\(b^4=1\)⇒b=2(Vì b≥0)
Suy ra :a=9.1=9 mà x2=a;y2=b⇒ x2=9 và y2=1
⇒xϵ{3;-3} và yϵ{1;-1}
\(\frac{x^2+y^2}{10}=\frac{x^2-2y^2}{7}\Leftrightarrow7.\left(x^2+y^2\right)=10.\left(x^2-2y^2\right)\Leftrightarrow7x^2+7y^2=10x^2-20y^2\)
\(\Leftrightarrow7x^2+7y^2-10x^2+20y^2=0\Leftrightarrow-3x^2+27y^2=0\Leftrightarrow-3.\left(x^2-9y^2\right)=0\Leftrightarrow x^2-9y^2=0\)
\(\Leftrightarrow\left(x-3y\right)\left(x+3y\right)=0\Leftrightarrow\orbr{\begin{cases}x-3y=0\\x+3y=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3y\\x=-3y\end{cases}}\) \(^{\left(1\right)}\)
\(Lại-có:x^4.y^4=81\Leftrightarrow\left(xy\right)^4=81\Leftrightarrow\orbr{\begin{cases}xy=3\\xy=-3\end{cases}}\) \(^{\left(2\right)}\)
Từ \(^{ \left(1\right)}\) và \(^{\left(2\right)}\), ta có:
+) Nếu \(:x=1\) thì \(\orbr{\begin{cases}y=3\\y=-3\end{cases}\left(Loại\right)}\)
+) Nếu \(:x=3\) thì \(\orbr{\begin{cases}y=1\\y=-1\end{cases}\left(Chọn\right)}\)
Vậy: nếu x=3 thì y=1 hoặc y =-1
mk làm mẫu 2 bài đầu nhé, các bài còn lại bạn làm tương tự, các bài này đều áp dụng tính chất dãy tỉ số bằng nhau
1) Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\)
suy ra: \(\frac{x}{3}=2\)=> \(x=6\)
\(\frac{y}{4}=2\)=> \(y=8\)
Vậy...
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{3}=\frac{x-y}{5-3}=\frac{20}{2}=10\)
suy ra: \(\frac{x}{5}=10\)=> \(x=50\)
\(\frac{y}{3}=10\)=> \(y=30\)
Vậy...
Câu 1:
c: 2x=3y
nên x/3=y/2
=>x/9=y/6
5y=3z
nên y/3=z/5
=>y/6=z/10
=>x/9=y/6=z/10
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{9}=\dfrac{y}{6}=\dfrac{z}{10}=\dfrac{3x+3y-7z}{3\cdot9+3\cdot6-7\cdot10}=\dfrac{35}{-25}=-\dfrac{7}{5}\)
Do đó: x=-63/5; y=-42/5; z=-14
Bài 2:
Gọi ba số lần lượt là a,b,c
Theo đề, ta có: 4/3a=b=3/4c
\(\Leftrightarrow\dfrac{a}{\dfrac{3}{4}}=\dfrac{b}{1}=\dfrac{c}{\dfrac{4}{3}}\)
\(\Leftrightarrow\dfrac{a}{9}=\dfrac{b}{12}=\dfrac{c}{16}\)
Đặt \(\dfrac{a}{9}=\dfrac{b}{12}=\dfrac{c}{16}=k\)
=>a=9k; b=12k; c=16k
Theo đề, ta có: \(a^2+b^2+c^2=481\)
\(\Leftrightarrow81k^2+144k^2+256k^2=481\)
=>k2=1
Trường hợp 1: k=1
=>a=9; b=12; c=16
Trường hợp 2: k=-1
=>a=-9; b=-12; c=-16
áp dụng dãy tỉ số = nhau ta có \(\dfrac{1+x}{2}=\dfrac{4-2y}{6}=\dfrac{4+z}{5}=\dfrac{x-2y+z+1+4+4}{2+6+5}=\dfrac{11}{13}\)
\(\dfrac{1+x}{2}=\dfrac{11}{13}\Leftrightarrow13\left(1+x\right)=22\Leftrightarrow13x+13=22\Leftrightarrow x=\dfrac{9}{13}\)
\(\dfrac{2-y}{3}=\dfrac{11}{13}\Leftrightarrow13\left(2-y\right)=33\Leftrightarrow-13y+26=33\Leftrightarrow y=-\dfrac{7}{13}\)
\(\dfrac{4+z}{5}=\dfrac{11}{13}\Leftrightarrow13\left(4+z\right)=55\Leftrightarrow13z+52=55\Leftrightarrow z=\dfrac{3}{13}\)
vậy..................
\(\dfrac{x}{2}=\dfrac{y}{3}\) ⇒ \(\dfrac{x}{8}=\dfrac{y}{12}\) (1)
\(\dfrac{y}{4}=\dfrac{z}{5}\) ⇒ \(\dfrac{y}{12}=\dfrac{z}{15}\) (2)
Từ (1) và (2) ⇒ \(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)\(=\dfrac{x+y-z}{8+12-15}\) \(=\dfrac{10}{5}=2\)
⇒ \(\left\{{}\begin{matrix}\dfrac{x}{8}=2\\\dfrac{y}{12}=2\\\dfrac{z}{15}=2\end{matrix}\right.\) ⇒\(\left\{{}\begin{matrix}x=16\\y=24\\z=30\end{matrix}\right.\)
Ta có \(\dfrac{x}{2}=\dfrac{y}{3}\) => \(\dfrac{1}{4}\cdot\dfrac{x}{2}=\dfrac{1}{4}\cdot\dfrac{y}{3}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}\left(1\right)\)
\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{1}{3}\cdot\dfrac{y}{4}=\dfrac{1}{3}\cdot\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\left(2\right)\)
Từ ( 1 ) và ( 2 ) ta có
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\) và x+y-z=10
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)
\(\Rightarrow\dfrac{x}{8}=2\Rightarrow x=2\cdot8=16\)
\(\dfrac{y}{12}=2\Rightarrow=2\cdot12=24\)
\(\dfrac{z}{15}=2\Rightarrow z=2\cdot15=30\)
vậy x = 16; y = 24; z = 30
Chúc bn học tốt
\(\dfrac{2x^2+2y^2}{20}=\dfrac{x^2-2y^2}{7}=\dfrac{3x^2}{27}=\dfrac{x^2}{9}\)
\(\dfrac{x^2-2y^2}{7}=\dfrac{x^2}{9}\Leftrightarrow9x^2-18y^2=7x^2\Leftrightarrow x^2=9y^2\)
ta có \(x^4.y^4=81\Leftrightarrow\left(9y^2\right)^2.y^4=81\Leftrightarrow y^8=1\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
mà \(x^2=9y^2\Leftrightarrow y^2=\dfrac{1}{9}\Leftrightarrow\left[{}\begin{matrix}y=\dfrac{1}{3}\\y=-\dfrac{1}{3}\end{matrix}\right.\)