Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x+1 . 5y =( 22 . 5)x
=> 2x+1 .5y = 22x .5x
=> 2x+1=22x và 5y= 5x
=>x+1=2x=>x=1
với 5y =5x => y=x
vậy x=y=1
b)15x : 3y =75y
=> (3.5)x :3y = (3.52)y (*)
=> 3x-y .5x = 3y. 52y
=> 3x-y= 3y và 5x=52y
=>x-y= y => x=2y
với 5x= 52y
=> x=2y.
vậy nếu ta chọn y=1 thì x=2
kết luận y=1 x=2
a,
2x+1. 5y=20y
=> 2x+1=20y:5y
=>2x+1=4y
=>2x+1=22y
=>x+1=2y
=> x là các số lẻ và y=x+1/2
nhớ ks cho mik
b,15x : 3y = 75y
\(\Rightarrow\)15x = 75y . 3y
\(\Rightarrow\)15x = ( 75 . 3 )y
\(\Rightarrow\)15x = 255y
\(\Rightarrow\)15x = 15y2
\(\Rightarrow\)x = 2y
Vậy x = 2y
a) Từ đề bài suy ra
2^x+1.3^y=(3.2^2)^x
2^x+1.3^y=3^x.(2^2)^x.Vì cách phân tích là duy nhất.
2^x+1=2^2x và 3^y=3^x
x+1=2x;y=x
x=y=1
b) 10^x:5^y=20^y
10^x =20^y.5^y
10^x = (20.5)^y
10^x = 100^y
10^x = 10^2y
x = 2y
Vậy x= 2y
\(2^{x+1}.3^y=12^x\)
\(\Rightarrow2^{x+1}.3^y=3^x.4^x\)
\(\Rightarrow2^{x+1}.3^y=3^x.2^{2x}\)
\(\Rightarrow\orbr{\begin{cases}2^{x+1}=2^{2x}\\3^y=3^x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+1=2x\\y=x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\\text{Vì y = x}\Rightarrow y=1\end{cases}}\)
a ) 2x+1 . 3y = 12x
=>2x+1*3y=(3*22)x
=>2x+1*3y=3x*22x
=>2x+1=22x và 3x=3y
=>x+1=2x và x=y
=>x=1 và x=y
=>x=y=1
c)2x=4y-1 và 27y=3x+8
=>2x=(22)y-1 và (33)y=3x+8
=>2x=22y-1 và 33y=3x+8
=>x=2y-1 và 3y=x+8
Thay x=2y-1 vào 3y=x+8 ta có:
3y=2y-1+8 =>3y=2y+7
=>y=7 =>x=2*7-1=13
Vậy y=7 và x=13
a)(2x-3)2=1<=> \(\orbr{\begin{cases}2x-3=1\\2x-3=-1\end{cases}< =>\orbr{\begin{cases}2x=4\\2x=2\end{cases}}}\)\(< =>\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
x=2 =>22.52=20y.5y <=>100 = 100y <=> y=1
x=1 => 2.5= 20y.5y <=>10=100y <=>y = 1/2
b)(4x-3)2+(y2-9)2\(\ge0\)
dấu = sảy ra khi \(\hept{\begin{cases}4x-3=0\\y^2-9=0\end{cases}< =>\hept{\begin{cases}4x=3\\y^2=9\end{cases}}}\)\(\hept{\begin{cases}x=\frac{3}{4}\\y=\pm3\end{cases}}\)
c) <=> (y-5)8 \(\le-\left(x+4\right)^7\) (1)
(y-5)8 >=0 với mọi y nên -(x+4)7 \(\ge\left(y-5\right)^8\ge0\)<=> (x+4)7\(\le0< =>x+4\le0< =>x\le-4\)
Khi đó (1) <=> y-5\(\le\sqrt[8]{-\left(x+4\right)^7}\) <=> y\(\hept{\begin{cases}y\le5-\sqrt[8]{-\left(x+4\right)^7}\\x\le-4\end{cases}}\)
a)\(2^{x+1}.5^y=20^x\Leftrightarrow2^x.2^x.5^y=2^x.2^x.5^x\Leftrightarrow5^y=5^x\Leftrightarrow y=x\)
b) Tương tự như ý a, chỉ cần thay số