K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2018

a) \(\left|3x-\frac{1}{2}\right|+\left|\frac{1}{2}y+\frac{3}{5}\right|=0\)

\(\Rightarrow\left|3x-\frac{1}{2}\right|=0\)                                \(\Rightarrow\left|\frac{1}{2}y+\frac{3}{5}\right|=0\)

\(\Rightarrow3x-\frac{1}{2}=0\)                                      \(\Rightarrow\frac{1}{2}y+\frac{3}{5}=0\)

\(3x=\frac{1}{2}\)                                                          \(\frac{1}{2}y=\frac{-3}{5}\)

\(x=\frac{1}{2}:3\)                                                             \(y=\left(\frac{-3}{5}\right):\frac{1}{2}\)

\(x=\frac{1}{6}\)                                                                  \(y=\frac{-6}{5}\)

KL: x = 1/6; y = -6/5

b) \(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|\le0\)

mà \(\left|\frac{3}{2}x+\frac{1}{9}\right|>0;\left|\frac{1}{5}y-\frac{1}{2}\right|>0\)

\(\Rightarrow\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|>0\)

=> trường hợp |3/2x +1/9| + |1/5y -1/2| < 0 không thế xảy ra

\(\Rightarrow\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|=0\)

rùi bn lm tương tự như phần a nhé!

15 tháng 6 2018

Giải:

Vì:

\(\left\{{}\begin{matrix}\left|3x-\dfrac{1}{2}\right|\ge0\\\left|\dfrac{1}{2}y+\dfrac{3}{5}\right|\ge0\end{matrix}\right.\)

Nên dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\left|3x-\dfrac{1}{2}\right|=0\\\left|\dfrac{1}{2}y+\dfrac{3}{5}\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-\dfrac{1}{2}=0\\\dfrac{1}{2}y+\dfrac{3}{5}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x=\dfrac{1}{2}\\\dfrac{1}{2}y=-\dfrac{3}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-\dfrac{6}{5}\end{matrix}\right.\)

Vậy ...

b) \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|+\left|\dfrac{1}{5}y-\dfrac{1}{2}\right|\le0\)

Vì:

\(\left\{{}\begin{matrix}\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|\ge0\\\left|\dfrac{1}{5}y-\dfrac{1}{2}\right|\ge0\end{matrix}\right.\)

Dấu "=" xảy ra, khi và chỉ khi:

\(\left\{{}\begin{matrix}\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|=0\\\left|\dfrac{1}{5}y-\dfrac{1}{2}\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{2}x+\dfrac{1}{9}=0\\\dfrac{1}{5}y-\dfrac{1}{2}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{2}x=-\dfrac{1}{9}\\\dfrac{1}{5}y=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{27}\\y=\dfrac{5}{2}\end{matrix}\right.\)

Vậy ...

\(\left(2x+\frac{3}{5}\right)^2-\frac{9}{25}=0\)

\(\Leftrightarrow\left(2x+\frac{3}{5}\right)^2=\frac{9}{25}\)

\(\Leftrightarrow\left(2x+\frac{3}{5}\right)^2=\left(\frac{3}{5}\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}2x+\frac{3}{5}=\frac{3}{5}\\2x+\frac{3}{5}=-\frac{3}{5}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x=0\\2x=-\frac{6}{5}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}\)

_Tần vũ_

\(3\left(3x-\frac{1}{2}\right)^3+\frac{1}{9}=0\)

\(\Leftrightarrow3\left(3x-\frac{1}{2}\right)^3=-\frac{1}{9}\)

\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=-\frac{1}{27}\)

\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=\left(-\frac{1}{3}\right)^3\)

\(\Leftrightarrow3x-\frac{1}{2}=\frac{-1}{3}\)

\(\Leftrightarrow3x=\frac{1}{6}\)

\(\Leftrightarrow x=\frac{1}{18}\)

_Tần Vũ_

30 tháng 3 2017

cho vài k đi bà con ơi

13 tháng 4 2017

a) x = \(\frac{1}{3}\)

b) x =  \(\frac{1}{42}\)

16 tháng 8 2017

1/3 và 1/42 nha bn

23 tháng 5 2019

\(\left(3x-1\right)\left(\frac{-1}{2}x+5\right)=0\)

\(\orbr{\begin{cases}3x-1=0\\\frac{-1}{2}x+5=0\end{cases}}\)

\(\orbr{\begin{cases}x=\frac{1}{3}\\x=10\end{cases}}\)

24 tháng 5 2019

\(\frac{1}{4}+\frac{1}{3}:(2x-1)=-5\)

\(\Rightarrow\frac{1}{3}:(2x-1)=-5-\frac{1}{4}\)

\(\Rightarrow\frac{1}{3}:(2x-1)=\frac{-21}{4}\)

\(\Rightarrow2x-1=\frac{1}{3}:-\frac{21}{4}\)

\(\Rightarrow2x-1=\frac{1}{3}\cdot-\frac{4}{21}\)

\(\Rightarrow2x-1=\frac{-4}{63}\)

\(\Rightarrow2x=-\frac{4}{63}+1\)

\(\Rightarrow2x=\frac{59}{63}\Leftrightarrow x=\frac{59}{126}\)

15 tháng 7 2018

\(\left(\frac{3}{4}.x-\frac{9}{16}\right).\left(\frac{1}{3}+\frac{-3}{5}:x\right)=0\)

<=> \(\hept{\begin{cases}\frac{3}{4}.x-\frac{9}{16}=0\\\frac{1}{3}-\frac{3}{5}.\frac{1}{x}=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=\frac{3}{4}\\\frac{3}{5x}=\frac{1}{3}\end{cases}}\)

<=> \(\hept{\begin{cases}x=\frac{3}{4}\\x=\frac{9}{5}\end{cases}}\)

\(\left(x-\frac{1}{3}\right)\left(\frac{2}{5}+x\right)>0\)

<=> \(\hept{\begin{cases}x-\frac{1}{3}>0\\x+\frac{2}{5}>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-\frac{1}{3}< 0\\x+\frac{2}{5}< 0\end{cases}}\)

<=> \(\hept{\begin{cases}x>\frac{1}{3}\\x>\frac{-2}{5}\end{cases}}\)hoặc \(\hept{\begin{cases}x< \frac{1}{3}\\x< \frac{-2}{5}\end{cases}}\)

<=>\(x>\frac{1}{3}\)hoặc \(x< \frac{-2}{5}\)

câu c tương tự nha

học tốt

24 tháng 7 2019

a) \(\frac{-2}{5}+\frac{5}{6}.x=\frac{-4}{15}\)

\(\frac{5}{6}.x=\frac{-4}{15}-\frac{-2}{5}\)

\(\frac{5}{6}.x=\frac{2}{15}\)

\(x=\frac{2}{15}:\frac{5}{6}\)

\(x=\frac{4}{25}\)

b) \(\left(x-\frac{1}{5}\right)\left(y+\frac{1}{2}\right)\left(z-3\right)=0\)

\(x-\frac{1}{5}=0\)

\(x=0+\frac{1}{5}\)

\(x=\frac{1}{5}\)