Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau, ta có
\(\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{x+y}{4+7}=\dfrac{22}{11}=2\) \(\Rightarrow\left\{{}\begin{matrix}x=8\\y=14\end{matrix}\right.\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{x+y}{4+7}=\dfrac{22}{11}=2\)
Do đó: x=8; y=14
Đặt \(\frac{x}{4}=\frac{y}{7}=k\left(k\ne0\right)\)
\(\Rightarrow x=4k\); \(y=7k\)
mà \(xy=112\)
\(\Rightarrow4k.7k=28k^2=112\)
\(\Rightarrow k^2=4\)\(\Rightarrow k=\pm2\)
TH1: Nếu \(k=-2\)
\(\Rightarrow x=\left(-2\right).4=-8\); \(y=\left(-2\right).7=-14\)
TH2: Nếu \(k=2\)
\(\Rightarrow x=2.4=8\); \(y=2.7=14\)
Vậy các cặp giá trị \(\left(x;y\right)\)thỏa mãn đề bài là \(\left(-8;-14\right)\), \(\left(8;14\right)\)
Đặt \(\frac{x}{4}=\frac{y}{7}=k\)
\(\Rightarrow\hept{\begin{cases}x=4k\\y=7k\end{cases}}\)
Thay vào \(x.y=112\)ta có:
\(x.y=112\)
\(\Rightarrow\)\(4k.7k=112\)
\(\Rightarrow\)\(\left(4.7\right).\left(k.k\right)\)\(=112\)
\(\Rightarrow\)\(28.k^2=112\)
\(\Rightarrow\)\(k^2=4\)
\(\Rightarrow\)\(k^2=\left(\pm2\right)^2\)
\(\Rightarrow\)\(k^2=\pm2\)
+, Với \(k=2\)ta có:
\(\hept{\begin{cases}x=2.4=8\\y=2.7=14\end{cases}}\)
+, Với \(k=-2\)ta có:
\(\hept{\begin{cases}x=\left(-2\right).4=-8\\y=\left(-2\right).7=-14\end{cases}}\)
Vậy \(\hept{\begin{cases}x=8\\y=14\end{cases}}\); \(\hept{\begin{cases}x=-8\\y=-14\end{cases}}\)
Câu 1:
a)Áp dụng tc dãy tỉ:
\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)
\(\Rightarrow\begin{cases}\frac{x}{3}=2\Rightarrow x=6\\\frac{y}{7}=2\Rightarrow y=14\end{cases}\)
b)Áp dụng tc dãy tỉ:
\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{6}{3}=2\)
\(\Rightarrow\begin{cases}\frac{x}{5}=2\Rightarrow x=10\\\frac{y}{2}=2\Rightarrow y=4\end{cases}\)
Câu 2:
a)\(\frac{x}{7}=\frac{18}{14}\Rightarrow14x=18\cdot7\)
\(\Rightarrow14x=126\)
\(\Rightarrow x=9\)
b và c đề có vấn đề
Câu 1:
a) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)
+) \(\frac{x}{3}=2\Rightarrow x=6\)
+) \(\frac{y}{7}=2\Rightarrow y=14\)
Vậy cặp số \(\left(x,y\right)\) là \(\left(6,14\right)\)
b) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{6}{3}=2\)
+) \(\frac{x}{5}=2\Rightarrow x=10\)
+) \(\frac{y}{2}=2\Rightarrow y=4\)
Vậy cặp số \(\left(x,y\right)\) là \(\left(10,4\right)\)
Câu 3:
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\frac{x-y+z}{2-4+6}=\frac{8}{4}=2\)
+) \(\frac{x}{2}=2\Rightarrow x=4\)
+) \(\frac{y}{4}=2\Rightarrow y=8\)
+) \(\frac{z}{6}=2\Rightarrow z=12\)
Vậy bộ số \(\left(x,y,z\right)\) là \(\left(4,8,12\right)\)
Câu 4:
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk,c=dk\)
Ta có:
\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)
\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\) (2)
Từ (1) và (2) suy ra \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Bài 1:
a.
Ta có tỉ lệ thức: 4,5 x 14,4 = 6 x 10,8
\(\Rightarrow\frac{4,5}{6}=\frac{10,8}{14,4};\frac{4,5}{10,8}=\frac{6}{14,4};\frac{6}{4,5}=\frac{14,4}{10,8};\frac{10,8}{4,5}=\frac{14,4}{6}\)
b.
Ta có tỉ lệ thức 1: 4 x 1024 = 16 x 256
\(\Rightarrow\frac{4}{16}=\frac{256}{1024};\frac{4}{256}=\frac{16}{1024};\frac{16}{4}=\frac{1024}{256};\frac{256}{4}=\frac{1024}{16}\)
Ta có tỉ lệ thức 2: 16 x 64 = 4 x 256
\(\Rightarrow\frac{16}{4}=\frac{256}{64};\frac{16}{256}=\frac{4}{64};\frac{4}{16}=\frac{64}{256};\frac{256}{16}=\frac{64}{4}\)
Bài 2:
Áp dụng t/c DTSBN. ta có:
\(\frac{x}{11}=\frac{y}{7}=\frac{x+y}{11+7}=\frac{-54}{18}=-3\)
\(\Rightarrow x=11.\left(-3\right)=-33\)
\(\Rightarrow y=7.\left(-3\right)=-21\)
Đặt x/4 = y/7 = t => x = 4t ; y = 7t
Thay vào xy ta đc
4t.7t = 112
28 t^2 = 112
t^2 = 4
=> t = 2 hoặc t = -2
(+) t = 2 => x =2.4 = 8 ; y = 7.2 = 14
(+) t = - 2 => x = -8 ; y = -14
x/4 = y/7 <=> 7x = 4y <=> 7x - 4y = 0 (1)
vì xy = 112 => y = 112/x (2)
từ (1) và (2) ta được:
7x - 4(112/x) = 0
<=> 7x^2 - 448 = 0 <=> x^2 = 448/7 = 64 <=> x = + - 8
\(\frac{x}{4}=\frac{y}{7}\) và xy=112
Đặt \(\frac{x}{4}=\frac{y}{7}=k\Rightarrow x=4k;y=7k\)
Có: xy=112 <=> 4k.7k=112
<=> 28k^2=112
<=>k^2=4
<=> k=2;k=-2
Với k=2 thì x=8 ;y=14
Với k=-2 thì x=-4 ; y=-14
Ta có : \(\begin{cases}\frac{x}{4}=\frac{y}{7}\\xy=112\end{cases}\)
Đặt : \(\frac{x}{4}=\frac{y}{7}=k\)
\(\Rightarrow\begin{cases}x=4k\\y=7k\end{cases}\)
Mà : \(x.y=112\) hay \(4k.7k=112\)
\(\Leftrightarrow28k^2=112\)
\(\Leftrightarrow k^2=4\)
\(\Leftrightarrow\begin{cases}k=2\\k=-2\end{cases}\)
Với \(k=2\Rightarrow x=8;y=14\)
Với \(k=-2\Rightarrow x=-8;y=-14\)
\(\frac{x}{4}=\frac{y}{7}\) và xy=112
Đặt \(\frac{x}{4}=\frac{y}{7}=k\Rightarrow x=4k;y=7k\)
Mà xy=112 hay 4k . 7k=112
<=> 28k^2 =112
<=> k^2 =4
<=>k=2 ; k=-2
Với k=2 thì x=8 ; y=14
Với k=-2 thì x=-8 ; y=-14
Ta có ; \(\begin{cases}\frac{x}{4}=\frac{y}{7}\\xy=112\end{cases}\) Đặt \(\frac{x}{4}=\frac{y}{7}=k\)
\(\Rightarrow\begin{cases}x=4k\\y=7k\end{cases}\) \(\Rightarrow xy=112\Leftrightarrow4k.7k=112\Leftrightarrow k^2=4\Leftrightarrow k=\pm2\)
Nếu k = 2 thì x = 8 , y = 14
Nếu k = -2 thì x = -8 , y = -14