Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
ta có \(\frac{x-2}{x-1}\) = \(\frac{x+4}{x+7}\)
=> (x-2)(x+7)=(x+4)(x-1)
x2+7x-2x-14= x2-x+4x-4
x2+5x-14-(x2-3x)=-4
(xem -4 là 1 xố hạng cần tìm của tổng)
2x-14=-4
2x=10
x=5
\(\frac{x-2}{x-1}=\frac{x+4}{x+7}\)
\(\Leftrightarrow\left(x-2\right)\times\left(x+7\right)=\left(x+4\right)\times\left(x-1\right)\)
\(\Leftrightarrow x^2+7x-2x-14=x^2-x+4x-4\)
\(\Leftrightarrow x^2-x^2+7x-2x+x-4x-14+4=0\)
\(\Leftrightarrow\)\(2x-10=0\)
\(\Rightarrow x=5\)
a: B\A=(-1;4]
\(C_R^B=R\text{\B}=(-\infty;-1]\cup\left(6;+\infty\right)\)
b: C=(-2;4]
D={0}
\(C\cap D=(-2;4]\)
a, A k là con của B ; B k là con của A
b, A\(\subset\)B
c, A\(\subset\)B
a: A={2;-1;1}
B={-2;1}
=>B là tập con của A
b: A=(-2;4)
B={0;1;2}
=>B là tập con của A
c: A là tập con của B
1) Áp dụng bđt Cauchy cho 3 số dương ta có
\(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)
\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)
\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)
Cộng (1);(2);(3) theo vế ta được
\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)
\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)
\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)
2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)
Dấu"=" khi a = 4b
nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)
Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)
Đặt \(\sqrt{a+b}=t>0\) ta được
\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)
\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)
Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)
nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)
khi đó a + b = 1
mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)
Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)
a)Vì x và y là 2 đại lượng tỉ lệ thuận nên ta có: \(y=kx\)
Khi x=-2 thì y=8 thay vào \(y=kx\) ta có:
\(8=k\cdot\left(-2\right)\Rightarrow k=8:\left(-2\right)=-4\)
Hệ số tỉ lệ của y đối với x là -4
b)\(y=-4x\left(1\right)\)
c)Khi x=6 thay vào (1) ta có:
\(y=-4\cdot6=-24\)
Vậy khi x=6 thì y=-24
Giải:
a) Không ghi rõ đề nên mình không làm được
b) \(\left|x+1\right|< 2\)
Mà \(\left|x+1\right|\ge0\)
\(\Leftrightarrow\left|x+1\right|=\left\{0,1\right\}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+1=-1\\x+1=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\\x=0\end{matrix}\right.\)
Vậy ...