Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10 - x + 48 = 40 - 2 + x
=>58-40 +2 = x - (-x )
=>20 = 2x
=>x=10
\(\left(x-1\right)^2=\left(x-3\right)^4\)
\(\Leftrightarrow\left(x-1\right)^2-\left(x-3\right)^4=0\)
\(\Leftrightarrow\left(x-1\right)^2-\left[\left(x-3\right)^2\right]^2=0\)
\(\Leftrightarrow\left[\left(x-1\right)-\left(x-3\right)^2\right]\left[\left(x-1\right)+\left(x-3\right)^2\right]=0\)
\(\Leftrightarrow\left(x-1-x^2+6x-9\right)\left(x-1+x^2-6x+9\right)=0\)
\(\Leftrightarrow\left(-x^2+7x-10\right)\left(x^2-5x+8\right)=0\)
\(\Leftrightarrow-\left(x-5\right)\left(x-2\right)\left(x^2-5x+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)
Vậy: ...
a) = 99x + (1+2+3+4+...+99)=0
99x+4950=0
99x=0-4950
99x=-4950
x=-4950:99
x=-50
Bài 1:
a: Để A là số nguyên thì \(x+1⋮3\)
=>x=3k-1, với k là số nguyên
b; Để B là số nguyên thì \(x-1\in\left\{1;-1;17;-17\right\}\)
hay \(x\in\left\{2;0;18;-16\right\}\)
dễ thôi
1/ x(x+3)=0 2/ (x-2)(5-x)=0 3/(x-1)(x2+1)=0
=> x=0 hoặc x+3=0 => x-2=0 hoặc 5-x=0 => x-1=0 hoặc x2+1=0
TH1: x=0 TH2: x+3=0 TH1: x-2=0 TH2: 5-x=0 TH1: x-1=0 TH2: x2+1=0
=> x= -3 => x=2 => x=5 => x=1 => x2 =-1
vậy x thuộc {0; -3} Vậy x thuộc { 2; 5 } =>x2=(-1)2 hoặc x2=12
TH1: x2=(-1)2 TH2: x2=12
=> x= -1 =>x=1
vậy x thuộc { 1; -1 }
tích cho mình nha bài mình làm đúng đấy
a)x(x+3)=0
=>x=0 hoặc x+3=0
x=0-3
x=-3
b)(x-2)(5-x)=0
=>x-2=0 hoặc 5-x=0
x=0+2 x=5-0
x=2 x=5
3)(x-1)(x2+1)=0
=>x-1=0 hoặc x2+1=0
x=0+1 x2=0-1=-1 mà x2>=0(với mọi x) (loại)
x=1
Vậy x=1
\(\left(x+1\right)+\left(x+2\right)+...+\left(x+40\right)=1000\)
\(x+1+x+2+...+x+40=1000\)
\(40x+\left(1+2+3+...+40\right)=1000\)
số số hạng của dãy 1+2+3+...+40 là
\(\left(40-1\right):1+1=40\)
tổng dãy trên là
\(\left(40+1\right).40:2=820\)
thay vào
\(40x+820=1000\)
\(40x=1000-820\)
\(40x=180\)
\(\Rightarrow x=180:40=4,5\)
\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+....+\left(x+40\right)=1000\)
Từ 1 đến 40 có 40 số số hạng => Có 40 x
\(\Leftrightarrow\left(x+x+x+....+x\right)+\left(1+2+3+....+40\right)=1000\)
\(\Leftrightarrow40x+\frac{\left(40+1\right)\cdot40}{2}=1000\)
\(\Leftrightarrow40x+820=1000\)
\(\Leftrightarrow40x=180\)
\(\Leftrightarrow x=\frac{18}{4}=\frac{9}{2}\)