Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để A là số nguyên thì \(\sqrt{x}+1-6⋮\sqrt{x}+1\)
=>\(\sqrt{x}+1\in\left\{1;2;3;6\right\}\)
hay \(x\in\left\{0;1;2;5\right\}\)
b:
Để A là số nguyên thì \(\sqrt{x}+1-6⋮\sqrt{x}+1\)
=>\(\sqrt{x}+1\in\left\{1;2;3;6\right\}\)
hay \(x\in\left\{0;1;2;5\right\}\)
a) Gọi biểu thức trên là A.
\(ĐK:x\ge0\). Ta có: \(A=\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{3}{\sqrt{x}+1}\) (1)
Để \(x\in Z\) thì \(\frac{3}{\sqrt{x}+1}\in Z\Leftrightarrow\sqrt{x}+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow\sqrt{x}=\left\{0;-2;2;-4\right\}\) nhưng do không có căn bậc 2 của số âm nên:
\(\sqrt{x}\in\left\{0;2\right\}\Leftrightarrow x\in\left\{0;4\right\}\). Thay vào (1) để thử lại ta thấy chỉ có x = 0 thỏa mãn.
Vậy có 1 nghiệm là x = 0
b) Gọi biểu thức trên là B. ĐK: \(x\ge0\)
\(B=\frac{2\left(\sqrt{2}-5\right)}{\sqrt{x}+1}=\frac{2\sqrt{2}-10}{\sqrt{x}+1}=\frac{2\sqrt{2}}{\sqrt{x}+1}-\frac{10}{\sqrt{x}+1}\)
Để \(x\in Z\) thì \(\frac{10}{\sqrt{x}+1}\in Z\Leftrightarrow\sqrt{x}+1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Đến đây bạn tiếp tục lập bảng tìm \(\sqrt{x}\) rồi bình phương tất cả các giá trị của \(\sqrt{x}\) để tìm được các giá trị của x nhé!. Nhưng lưu ý rằng làm xong phải thử lại bằng cách thế vào B để tìm nghiệm chính xác nhất nhé!
c) Tương tự như trên,bạn tự làm
d) Tương tự như câu a),bạn tự làm. Mình lười òi =))
a/ \(\left(x+2\right)\left(x-4\right)\le0\)
\(\Rightarrow\begin{cases}x+2\ge0\\x-4\le0\end{cases}\) hoặc \(\begin{cases}x+2\le0\\x-4\ge0\end{cases}\)
\(\Rightarrow-2\le x\le4\)
b/ \(\frac{2x+3}{x-4}>1\Leftrightarrow\frac{2x+3}{x-4}-1>0\Leftrightarrow\frac{x+7}{x-4}>0\)
\(\Rightarrow\begin{cases}x+7>0\\x-4>0\end{cases}\) hoặc \(\begin{cases}x+7< 0\\x-4< 0\end{cases}\)
\(\Rightarrow\left[\begin{array}{nghiempt}x>4\\x< -7\end{array}\right.\)
c/ \(\frac{x+3}{x+4}>1\Rightarrow\frac{x+3}{x+4}-1>0\Rightarrow-\frac{1}{x+4}>0\Rightarrow x+4< 0\Rightarrow x< -4\)
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Để A thuộc Z
=>\(\frac{4}{\sqrt{x}-3}\in Z\)
<=>\(\sqrt{x}-3\inƯ\left(4\right)\)
=>\(\sqrt{x}-3\in\left(-2;2;-1;1;-4;4\right)\)