Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+x+1=x\left(x+1\right)+1\)
Vì \(x\inℤ\)\(\Rightarrow x\left(x+1\right)⋮x+1\)\(\Rightarrow\)Để \(x^2+x+1⋮x+1\)thì \(1⋮x+1\)
\(\Rightarrow x+1\inƯ\left(1\right)=\left\{-1;1\right\}\)\(\Rightarrow x\in\left\{-2;0\right\}\)
Vậy \(x\in\left\{-2;0\right\}\)
b) \(3x-8=3x-12+4=3\left(x-4\right)+4\)
Vì \(3\left(x-4\right)⋮x-4\)\(\Rightarrow\)Để \(3x-8⋮x-4\)thì \(4⋮x-4\)
\(\Rightarrow x-4\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Lập bảng giá trị ta có:
\(x-4\) | \(-4\) | \(-2\) | \(-1\) | \(1\) | \(2\) | \(4\) |
\(x\) | \(0\) | \(2\) | \(3\) | \(5\) | \(6\) | \(8\) |
Vậy \(x\in\left\{0;2;3;5;6;8\right\}\)
a, x^2+x+1= x(x+1)+1
Vì x(x+1) chia hết cho x+1 nên x(x+1)+1 chia hết cho x+1 khi và chỉ khi 1 chia hết cho x+1
⇒ x+1=-1 hoặc x+1=1
⇒ x=-2 hoặc x=0
b, 3x-8=3x-12+4=3(x-4)+4
Vì 3(x-4) chia hết cho x-4 nên 3(x-4)+4 chia hết cho x-4 khi và chỉ khi 4 chia hết cho x-4
⇒ x-4 ∈{-4,-2,-1,1,2,4}
⇒ x ∈{0,2,3,5,6,8}
đúng thì link nhé chúc học tốt!!!!!!
\(x^2+x+1\)\(⋮\text{ }x+1\)
\(\Rightarrow x\left(x+1\right)+1\)\(⋮\text{ }x+1\)
\(\Rightarrow1\text{}\)\(⋮\text{ }x+1\)\(\Rightarrow x+1\)\(\inƯ\left(1\right)=\left\{\pm1\right\}\)
- \(x+1=1\Rightarrow x=0\)
- \(x+1=-1\Rightarrow x=-2\)
a, \(3x-8⋮x-4\)
\(3\left(x-4\right)+4⋮x-4\)
\(4⋮x-4\)hay \(x-4\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
x - 4 | 1 | -1 | 2 | -2 | 4 | -4 |
x | 5 | 3 | 6 | 2 | 8 | 0 |
c, tương tự
a,Gợi ý:vì x^2+x+1 chia hết cho x+1 => x^2 chia hết cho x+1 b,Gợi ý nhân 3 với (x-4) rồi lấy 3x-8 trừ đi c,lấy (x+5) trừ đi x-2 e,Gợi ý x^2+2x-7 chia hết cho x+2
b, Có : 3a+7b chia hết cho 4
Mà 16a và 8b đều chia hết cho 4
=> 3a+7b+16a-8b chia hết cho 4
=> 19a-b chia hết cho 4
=> ĐPCM
Tk mk nha
1)
x - 18 = 3x + 4
=> x - 3x = 4 + 18
=> -2x = 22
=> x = 22 : (-2)
=> x = -11
Vậy x = -11
a)<=>(x+1)+2 chia hết x+1
=>2 chia hết x+1
=>x+1\(\in\){1,-1,2,-2}
=>x\(\in\){0,-2,1,-3}
b)<=>3(x-2)+7 chia hết x-2
=>7 chia hết x-2
=>x-2\(\in\){1,-1,7,-7}
=>x\(\in\){3,1,9,-5}
c,d,e tương tự
Hai bài toán rất hay và lạ! Xin cảm ơn bạn Tuấn Minh.
Và mình không hiểu người post cái bài dài dài kia (bạn Thành - sau mà đổi tên là không biết tên gì nốt) nói gì luôn. @@@.
1./ Tìm các số nguyên dương x;y;z sao cho: \(\hept{\begin{cases}x+3=2^y\left(1\right)\\3x+1=4^z\left(2\right)\end{cases}}\)
- Ta thấy y=0; 1 không phải là nghiệm của bài toán.
- Với y =2 thì x=1; z=1 là 1 nghiệm của bài toán.
- Với y>=3 thì:
- Từ (2) suy ra: \(3x=4^z-1=\left(4-1\right)\left(4^{z-1}+4^{z-2}+...+4^2+4+1\right)\)
\(\Leftrightarrow x=4^{z-1}+4^{z-2}+...+4^2+4+1\)
- Thay vào (1) ta có: \(\left(1\right)\Leftrightarrow4^{z-1}+4^{z-2}+...+4^2+4+1+3=2^y\)
\(\Leftrightarrow4^{z-1}+4^{z-2}+...+4^2+4+4=2^y\)
\(\Leftrightarrow8\cdot2\cdot4^{z-3}+8\cdot2\cdot4^{z-4}+...+8\cdot2\cdot4+8\cdot2+8=2^y\)
\(\Leftrightarrow8\cdot\left(2\cdot4^{z-3}+2\cdot4^{z-4}+...+2\cdot4+2+1\right)=8\cdot2^{y-3}\)
\(\Leftrightarrow\left(2\cdot4^{z-3}+2\cdot4^{z-4}+...+2\cdot4+2+1\right)=2^{y-3}\)
Ta thấy vế trái lẻ nên đạt được dấu bằng chỉ khi y=3; khi đó x=5 và z=2.
- Vậy bài toán có 2 bộ nghiệm nguyên là: \(\hept{\begin{cases}x=1;y=2;z=1\\x=5;y=3;z=2\end{cases}}\)