Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x^2-10x+36}{x-5}=\frac{x^2-10x+25+9}{x-5}\) \(=\frac{\left(x-5\right)^2+9}{x-5}=x-5+\frac{9}{x-5}\)
để \(A\in Z\)
<=> \(\frac{9}{x-5}\in Z\)mà \(x\in Z\)
=> \(x-5\inƯ\left(9\right)\)
=> \(x-5\in\left(1;-1;3;-3;9;-9\right)\)
=> \(x\in\left(6;4;8;2;14;-4\right)\)
học tốt
\(A=\frac{3x-1}{x-1}=\frac{3\left(x-1\right)+2}{x-1}=3+\frac{2}{x-1}\)
\(B=\frac{2x^2+x-1}{x+2}=\frac{\left(x+2\right)\left(2x-3\right)+5}{x+2}=2x-3+\frac{5}{x+2}\)
Để A,B đều là số nguyên thì \(x-1\in\left\{1;2;-1;-2\right\}\) và \(x+2\in\left\{1;5;-1;-5\right\}\)
Bạn tự làm nốt
Ta có: ĐK \(x\ne-1\)
\(A=\frac{x^2+2x}{x+1}=\frac{x^2+2x+1-1}{x+1}=\frac{\left(x+1\right)^2-1}{x+1}=x+1-\frac{1}{x+1}\)
Để A là số nguyên thì ta có \(x+1\inƯ\left(1\right)\)
Ta có bảng sau:
x+1 | 1 | -1 |
x | 0 | -2 |
Vậy \(x\in\left\{0;-2\right\}\)
sai đề rùi nhé bạn đán lẽ tìm
a thuộc Z sao cho a-2/2a là
số nguyên
Để \(\frac{a-2}{2a}\)là số nguyên
\(\Rightarrow\left(a-2\right)⋮2a\)
\(\Rightarrow a-2⋮a+a\)
mà \(a⋮a\Rightarrow-2⋮a\)
\(\Rightarrow a\in U\left(-2\right)=\left\{1;-1;2;-2\right\}\)
Vậy \(a\in\left\{1;-1;2;-2\right\}\)
a)\(\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=\frac{a\left(a+1\right)}{a+1}+\frac{3}{a+1}=a+\frac{3}{a+1}\in Z\)
\(\Rightarrow3⋮a+1\)
\(\Rightarrow a+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow a\in\left\{0;-2;2;-4\right\}\)
b) Phần 1
\(x-2xy+y=0\)
\(\Rightarrow2x-4xy+2y=0\)
\(\Rightarrow2x-4xy+2y-1=-1\)
\(\Rightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)
\(\Rightarrow\left(2x-1\right)\left(1-2y\right)=-1\)
Lập bảng xét Ư(-1)={1;-1}
Phần 2:
\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
\(\Leftrightarrow\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)
\(\Leftrightarrow\frac{x+y+z+t}{y+z+t}=\frac{y+z+t+x}{z+t+x}=\frac{z+t+x+y}{t+x+y}=\frac{t+x+y+z}{x+y+z}\)
+)XÉt \(x+y+z+t\ne0\) suy ra \(x=y=z=t\), Khi đó \(P=1+1+1+1=4\)
+)Xét \(x+y+z+t=0\) suy ra x+y=-(z+t); y+z=-(t+x); (z+t)=-(x+y); (t+x)=-(y+z)
Khi đó \(P=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
Vậy P có giá trị nguyên
\(\frac{1}{3}-|\frac{5}{4}-2x|=\frac{1}{4}\)
\(\Leftrightarrow|\frac{5}{4}-2x|=\frac{1}{4}+\frac{1}{3}=\frac{7}{12}\)
\(\Leftrightarrow\orbr{\begin{cases}Th1:\frac{5}{4}-2x=\frac{7}{12}\\Th2:\frac{5}{4}-2x=-\frac{7}{12}\end{cases}}\)
\(\Leftrightarrow Th1:\frac{5}{4}-2x=\frac{7}{12}\) \(\Leftrightarrow Th2:\frac{5}{4}-2x=-\frac{7}{12}\)
\(\Leftrightarrow2x=\frac{7}{12}+\frac{5}{4}\) \(\Leftrightarrow2x=-\frac{7}{12}+\frac{5}{4}\)
\(\Leftrightarrow2x=\frac{11}{6}\) \(\Leftrightarrow2x=\frac{2}{3}\)
\(\Leftrightarrow x=\frac{11}{12}\) \(\Leftrightarrow x=\frac{1}{3}\)
P/s : Mình làm bừa ạ nếu kh đúng xin mọi người chỉ thêm ~~
Làm câu a,b thôi nha !
a)Tính A khi x=1;x=2;x=5/2
x=1
Thay x vào biểu thức A, ta có:
\(\frac{3.x+2}{1-3}=-\frac{5}{2}\)
x=2
Thay x vào biểu thức A ta có:
\(\frac{3.2+2}{2-3}=-\frac{8}{1}=-8\)
x=5/2
Thay x vào biểu thức A ta có:
\(\frac{3.0,4+2}{0,4-3}=\frac{3,2}{-2,6}=\frac{16}{13}\)
b)Tìm x thuộc Z để A là số nguyên:
\(A=\frac{3x+2}{x-3}\)
Để A là số nguyên thì:
=>\(3x+2⋮x-3\)
\(\Rightarrow3x-9+11⋮x-3\)
\(\Rightarrow3\left(x-3\right)+11⋮x-3\)
\(\Rightarrow11⋮x-3\)
\(\Rightarrow x-3\inƯ\left(11\right)=\left\{1;11\right\}\)
Xét trường hợp
\(\orbr{\begin{cases}x-3=1\\x-3=11\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1+3=4\\x=11+3=14\end{cases}}\)
Vậy A là số nguyên thì
\(x\inƯ\left(4;14\right)\)
Các bài còn lại làm tương tự !
\(\frac{3x+2}{x-3}=\frac{3x-9+11}{x-3}=\frac{3\left(x-3\right)+11}{x-3}=\frac{3\left(x-3\right)}{x-3}+\frac{11}{x-3}=3+\frac{11}{x-3}\)
=> x-3 thuộc Ư(11)={-1,-11,1,11}
x-3 | -1 | -11 | 1 | 11 |
x | 2 | -8 | 4 | 14 |
Vậy....
Ta có: \(3x+2=3\left(x-3\right)+11\)
Để 3x+2 chia hết cho x-3 thì 3(x-3) +11 chia hết cho x-3
=> 11 chia hết cho x-3 vì 3(x-3) chia hết cho x-3
Mà x\(\in\)Z \(\Rightarrow x-3\in Z\)
=> \(x-3\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)
Lập bảng giải tiếp
Ta có :
\(A=\frac{2x-3}{x-2}=\frac{2x-4+1}{x-2}=\frac{2x-4}{x-2}+\frac{1}{x-2}=\frac{2\left(x-2\right)}{x-2}+\frac{1}{x-2}=2+\frac{1}{x-2}\)
Để A là số nguyên thì \(1⋮\left(x-2\right)\)\(\Rightarrow\)\(\left(x-2\right)\inƯ\left(1\right)\)
Mà \(Ư\left(1\right)=\left\{1;-1\right\}\)
Suy ra :
Vậy \(x=1\) hoặc \(x=3\) thì A là số nguyên
Chúc bạn học tốt ~
Ta có : \(A=\frac{2x-3}{x-2}\)
\(\Leftrightarrow A=\frac{2x-4+1}{x-2}\)
\(\Leftrightarrow A=\frac{2\left(x-2\right)}{x-2}+\frac{1}{x-2}\)
\(\Leftrightarrow A=2+\frac{1}{x-2}\)
Mà \(A\in Z\)
\(\Leftrightarrow\frac{1}{x-2}\in Z\)
\(\Leftrightarrow1⋮x-2\)
\(\Leftrightarrow x-2\in\left\{-1;1\right\}\)
\(\Leftrightarrow x\in\left\{1;3\right\}\)
Vậy \(A\in Z\Leftrightarrow x\in\left\{1;3\right\}\)