Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{-7}=\frac{5}{-35}\)
\(\frac{x.5}{-35}=\frac{5}{-35}\)
=> x . 5 = 5
x = 5 : 5
x = 1
#)Giải :
a) \(\left|x-2\right|=2x-9\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=2x-9\\-x+2=2x-9\end{cases}\Leftrightarrow\orbr{\begin{cases}x-2x=2-9\\-x-2x=-2-9\end{cases}\Leftrightarrow}\orbr{\begin{cases}x-2x=-7\\-x-2x=-11\end{cases}\Leftrightarrow}x=7}\)
Vậy x = 7
a) \(\left|x-2\right|=2x-9\)
Giải
Nếu \(2x-9< 0\Rightarrow2x< 9\Rightarrow x< \frac{9}{2}\)
\(\Rightarrow\)Không có giá trị của x thỏa mãn bài toán :
Nếu \(2x-9\ge0\Rightarrow2x\ge9\Rightarrow x\ge\frac{9}{2}\)
\(\Rightarrow\orbr{\begin{cases}x-2=-2x+9\\x-2=2x-9\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+2x=2+9\\x-2x=2-9\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3x=11\\-x=-7\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{11}{3}\left(ktm\right)\\x=7\left(tm\right)\end{cases}}\)
\(\Rightarrow x=7\)
Vậy x = 7
b) \(\frac{x+3}{x-2}< 0\); \(x\ne-2\)
\(\Rightarrow\hept{\begin{cases}x+3< 0\\x-2>0\end{cases}}\)hoặc\(\hept{\begin{cases}x+3>0\\x-2< 0\end{cases}}\)
Nếu \(\hept{\begin{cases}x+3< 0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x< -3\\x>2\end{cases}}}\Rightarrow x\in\varnothing\)
Nếu \(\hept{\begin{cases}x+3>0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-3\\x< 2\end{cases}\Rightarrow}x\in\left\{-1;0;1\right\}}\)
Vậy \(x\in\left\{-1;0;1\right\}\)
c) \(\frac{x-3}{x+4}>0;x\ne-4\)
\(\Rightarrow\hept{\begin{cases}x-3>0\\x+4>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-3< 0\\x+4< 0\end{cases}}\)
Nếu \(\hept{\begin{cases}x-3>0\\x+4>0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x>-4\end{cases}}}\Rightarrow x>3\)
Nếu \(\hept{\begin{cases}x-3< 0\\x+4< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x< -4\end{cases}\Rightarrow}x< -4}\)
\(\Rightarrow\orbr{\begin{cases}x>3\\x< -4\end{cases}}\)
Vậy x > 3 hoặc x < - 4
\(\frac{x-2}{4}=\frac{-9}{2-x}\)
\(\Rightarrow\frac{x-2}{4}=\frac{9}{x-2}\)
\(\Rightarrow\left(x-2\right)^2=36\)
\(\Rightarrow\left(x-2\right)^2=\left(\pm6\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=6\\x-2=-6\end{cases}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-4\end{cases}}}\)
\(\frac{x}{15}=\frac{3}{y}\)
\(\Rightarrow xy=45\)
\(\Rightarrow x;y\inƯ\left(45\right)=\left\{\pm1;\pm3;\pm5;\pm9;\pm15;\pm45\right\}\)
Xét bảng
x | 1(loại) | -1 | 3(loại) | -3 | 5(loại) | -5 | 45 | -45(loại) | 15 | -15(loại) | 9 | -9(loại) |
y | 45(loại) | -45 | 15(loại) | -15 | 9(loại) | -9 | 1 | -1(loại) | 3 | -3(loại) | 5 | -5(loại) |
Vậy.......................................
d;Áp dụng tích chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{3}=\frac{x+y}{4+3}=\frac{14}{7}=2\)
\(\Rightarrow x=4.2=8\)
\(y=3.2=6\)
Để \(\frac{2x-1}{x+2}>0\Rightarrow\hept{\begin{cases}2x-1< 0\\x+2< 0\end{cases}}\)hoặc \(\hept{\begin{cases}2x-1>0\\x+2>0\end{cases}}\)
Nếu \(\hept{\begin{cases}2x-1< 0\\x+2< 0\end{cases}\Rightarrow\hept{\begin{cases}2x< 1\\x< 0-2\end{cases}\Rightarrow}\hept{\begin{cases}x< \frac{1}{2}\\x< -2\end{cases}\Rightarrow}x< -2}\)
Nếu \(\hept{\begin{cases}2x-1>0\\x+2>0\end{cases}\Rightarrow\hept{\begin{cases}2x>1\\x>0-2\end{cases}\Rightarrow}\hept{\begin{cases}x>\frac{1}{2}\\x>-2\end{cases}}\Rightarrow x>\frac{1}{2}}\)
Vậy \(\orbr{\begin{cases}x< -2\\x>\frac{1}{2}\end{cases}}\)
b) Để \(\frac{3-x}{3+x}< 0\Rightarrow\hept{\begin{cases}3-x>0\\3+x< 0\end{cases}}\)hoặc \(\hept{\begin{cases}3-x>0\\3+x< 0\end{cases}}\)
Nếu \(\hept{\begin{cases}3-x>0\\3+x< 0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x< -3\end{cases}\Rightarrow}-3< x< 3}\)
Nếu \(\hept{\begin{cases}3-x< 0\\3+x>0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x>-3\end{cases}}}\Rightarrow3< x< -3\Rightarrow x\in\varnothing\)
Vậy \(-3< x< 3\)
a)ta có xy=7*9=7*3*3
vậy x =9;21 , y=7;3
b) xy=-2*5
mà x<0<y
nên x=-2 ,y=5
c)x-y=5 hay x=y+5
\(\frac{y+5+4}{y-5}=\frac{4}{3}\Rightarrow3y+27=4y-20\Rightarrow y=47\Rightarrow x=52\)
\(\left(x+1\right)\left(x+7\right)< 0\)
thì \(x+1;x+7\)khác dấu
th1\(\hept{\begin{cases}x+1< 0\\x+7>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< -1\\x>-7\end{cases}\Rightarrow}-7< x< -1\left(tm\right)}\)
th2\(\hept{\begin{cases}x+1>0\\x+7< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< -7\end{cases}\Rightarrow}-1< x< -7\left(vl\right)}\)
vậy với\(-7< x< -1\)thì \(\left(x+1\right)\left(x+7\right)< 0\)
a) (2x - 3) = 5
<=> 2x - 3 = 5
<=> 2x = 5 + 3
<=> 2x = 8
<=> x = 4
=> x = 4
b) (5x - 3) = 1/2
<=> 5x - 3 = 1/2
<=> 5x = 1/2 + 3
<=> 5x = 7/2
<=> x = 7/10
=> x = 7/10
c) (x + 1)(x + 7) < 0
<=> x = -1; -7
<=> x < -7 <=> x = -8 <=> (-8 + 1)(-8 + 7) < 0 <=> 7 < 0 (loại)
<=> -7 < x < -1 <=> x = -6 <=> (-6 + 1)(-6 + 7) < 0 <=> -5 < 0 (nhận)
<=> x > -1 <=> x = 0 <=> (x + 1)(x + 7) < 0 <=> 7 < 0 (loại)
Vậy: -7 < x < -1
a) \(\frac{x-1}{6}=\frac{2x+3}{7}\)
\(\Leftrightarrow7\left(x-1\right)=6\left(2x+3\right)\)
\(\Leftrightarrow7x-7=12x+18\)
\(\Leftrightarrow5x+18=-7\)
\(\Leftrightarrow5x=-25\)
\(\Leftrightarrow x=-5\)
b) \(\left(2x^2-\frac{1}{2}x\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x\left(2x-\frac{1}{2}\right)\left(x^2+1\right)=0\)
Vì \(x^2+1>0\)nên \(\orbr{\begin{cases}x=0\\2x-\frac{1}{2}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{4}\end{cases}}\)
a) \(\frac{-13}{2x+1}< 0\)
\(=>2x+1>0\)
\(=>2x>-1\)
\(=>x=\frac{1}{2}\)
b) \(\frac{x-1}{x+3}>0\)
\(=>x-1>0=>x>1\)
c) \(\frac{2x+2}{x-4}< 0\)
\(=>2x+2< 0=>x< -1\)