Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\in Z\Leftrightarrow\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\in Z\)
\(\Leftrightarrow\frac{\sqrt{x}-3}{\sqrt{x}-3}+\frac{4}{\sqrt{x}-3}\in Z\Leftrightarrow1+\frac{4}{\sqrt{x}-3}\in Z\)
\(\Leftrightarrow\frac{4}{\sqrt{x}-3}\in Z\Rightarrow\sqrt{x}-3\inƯ\left(4\right)\in\left\{-1;1;-2;2;-4;4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{2;4;1;5;-1;7\right\}\Rightarrow x\left\{4;16;1;25;1;49\right\}\)
Vậy \(x=\left\{1;4;16;25;49\right\}\)thì \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\in Z.\)
a) để M nguyên thì \(\frac{x+2}{3}\in Z\)
\(\Rightarrow x+2⋮3\)
\(\Rightarrow\)x + 2 \(\in\)B ( 3 ) = { ... ; -9 ; -6 ; -3 ; 0 ; 3 ; 6 ; 9 ; ... }
\(\Rightarrow\)x = { ... ; -11 ; -8 ; -5 ; -2 ; 1 ; 4 ; 7 ; ... }
b) để N nguyên thì \(\frac{7}{x-1}\)nguyên
\(\Rightarrow7⋮x-1\)
\(\Rightarrow x-1\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\)
Lập bảng ta có :
x-1 | 1 | 7 | -1 | -7 |
x | 2 | 8 | 0 | -6 |
\(\left|x+\frac{1}{2}\right|+\left|y-\frac{3}{4}\right|+\left|z+1\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|y-\frac{3}{4}\right|=0\\\left|z+1\right|=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=0-\frac{1}{2}\\y=0+\frac{3}{4}\\z=0-1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=\frac{3}{4}\\z=-1\end{cases}}\)
\(P=\frac{x^2-5}{x^2-2}=\frac{x^2-2-3}{x^2-2}=\frac{x^2-2}{x^2-2}-\frac{3}{x^2-2}\)
\(=1-\frac{3}{x^2-2}\). Để P thuộc Z thì \(\frac{3}{x^2-2}\in Z\)
Hay \(x^2-2\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow x\in\left\{\pm1\right\}\left(x\in Z\right)\)