Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do \(x^2-2x-6\) là số chính phương đặt \(x^2-2x-6=a^2\)
\(\Rightarrow x^2-2x+1-7=a^2\)
\(\Rightarrow\left(x-1\right)^2-7=a^2\)
\(\Rightarrow\left(x-1\right)^2-a^2=7\)
\(\Rightarrow\left(x-a-1\right)\left(x+a-1\right)=7\)
Do: \(x-a-1< x+a-1\) nên:
\(\left\{{}\begin{matrix}x-a-1=1\\x+a-1=7\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x-2=8\\x+a=8\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=10\\x+a=8\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=5\\a=3\end{matrix}\right.\)
Vậy: ...
Đặt \(x^2+2x+20=a^2\left(a\ge0\right)\)
\(\Leftrightarrow x^2+2x+1+19=a^2\)
\(\Leftrightarrow\left(x+1\right)^2+19=a^2\)
\(\Leftrightarrow a^2-\left(x+1\right)^2=19\)
\(\Leftrightarrow\left(a+x+1\right)\left(a-x-1\right)=19=19.1\)
Vì \(a\ge0;x\ge0\)nên\(\left(a+x+1\right)\ge\left(a-x-1\right)\)
Suy ra:\(\hept{\begin{cases}a+x+1=19\\a-x-1=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+x=18\\a-x=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=10\\x=8\end{cases}}\)(Phần này mình làm nhanh)
Vậy khi x=8 thì \(x^2+2x+20\)là số chính phương
ĐKXĐ: \(x\ne\pm3\)
a
Khi x = 1:
\(A=\dfrac{3.1+2}{1-3}=\dfrac{5}{-2}=-2,5\)
Khi x = 2:
\(A=\dfrac{3.2+2}{2-3}=-8\)
Khi x = \(\dfrac{5}{2}:\)
\(A=\dfrac{3.2,5+2}{2,5-3}=\dfrac{9,5}{-0,5}=-19\)
b
Để A nguyên => \(\dfrac{3x+2}{x-3}\) nguyên
\(\Leftrightarrow3x+2⋮\left(x-3\right)\\3\left(x-3\right)+11⋮\left(x-3\right) \)
Vì \(3\left(x-3\right)⋮\left(x-3\right)\) nên \(11⋮\left(x-3\right)\)
\(\Rightarrow\left(x-3\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\\ \Rightarrow x\left\{4;2;-8;14\right\}\)
c
Để B nguyên => \(\dfrac{x^2+3x-7}{x+3}\) nguyên
\(\Rightarrow x\left(x+3\right)-7⋮\left(x+3\right)\)
\(\Rightarrow-7⋮\left(x+3\right)\\ \Rightarrow x+3\inƯ\left\{\pm1;\pm7\right\}\)
\(\Rightarrow x=\left\{-4;-11;-2;4\right\}\)
d
\(\left\{{}\begin{matrix}A.nguyên.\Leftrightarrow x=\left\{-8;2;4;14\right\}\\B.nguyên\Leftrightarrow x=\left\{-11;-4;-2;4\right\}\end{matrix}\right.\)
=> Để A, B cùng là số nguyên thì x = 4.