Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Giả sử \(C=\frac{2x+3}{7}=t\left(t\in Z\right)\)
\(\Rightarrow x=\frac{7t-3}{2}\). Để \(x\in Z\) thì t phải lẻ. Nói cách khác \(t=2k+1\left(k\in Z\right)\)
Suy ra \(x=\frac{7\left(2k+1\right)-3}{2}=14k+2\)
Vậy để \(\frac{2x+3}{7}\in Z\) thì \(x=14k+2\left(k\in Z\right)\)
b) Ta thấy \(C=\frac{6x-1}{3x+2}=\frac{\left(6x+4\right)-5}{3x+2}=2-\frac{5}{3x+2}\)
Do x nguyên nên C đạt GTNN khi \(\frac{5}{3x+2}\) lớn nhất. Điều này xảy ra khi 3x + 2 = 2 hay x = 0.
Vậy \(minC=-\frac{1}{2}\) khi x = 0.
Ừ nhưng thấy kêu kh tìm được số lớn. Bạn có cách giải khác kh?
C2:
Số số hạng của tổng là: [(x + 9) - (x + 1)]:2 + 1 = 5 (số)
Áp dụng cách tính tổng các số cách đều ta có:
[(x + 9) + (x + 1)].5 : 2 = \(\frac{5\left(2x+10\right)}{2}=0\)
=> 5(2x + 10) = 0
=> 2x + 10 = 0
=> 2x = -10
=> x = -5
http://olm.vn/hỏi-đáp/question/584545.html chờ xí tui thấy cái tên rồi giải cho bài 2
a: =>x(y+1)+y+1=11
=>(x+1)(y+1)=11
=>(x+1;y+1) thuộc {(1;11); (11;1); (-1;-11); (-11;-1)}
=>(x,y) thuộc {(0;10); (10;0); (-2;-12); (-12;-2)}
b: y là số nguyên
=>5x-3 chia hết cho 2x+4
=>10x-6 chia hết cho 2x+4
=>10x+20-26 chia hết cho 2x+4
=>-26 chia hết cho 2x+4
mà x nguyên
nên 2x+4 thuộc {2;-2;26;-26}
=>x thuộc {-1;-3;11;-15}
Bài 1 :
a) x={2,4}
b) x-1={-3,-2,-1,0,1,2,3,4}
=> x={-2,-1,0,1,2,3,4,5}
c) x+2={-7,-6,-5,-4}
=> x={-9,-8,-7,-6}
Bài 2 :
(x-3)(x+2)=0
=> x-3=0 => x=3
=> x+2=0 => x=-2
Vậy x=-2 hoặc x=3
BÀI 1
A) 3<X<5
=>X=4
B) -4<X+2<5
=>X-1\(\in\left(-3;-2;-1;0;1;2;3;4\right)\)
=> X-1=-3 => X-1=-2 =>X-1=-1 =>X-1=0 => X-1=1
X=-2 X=-1 X= 0 X=1 X=2
=>X-1=2 => X-1=3 =>X-1=4
X=3 X=4 X=5
C) -8<X+2<-3
=> X+2\(\in\left(-7;-6;-5;-4\right)\)
=> X+2=-7 =>X+2=-6 =>X+2=-5 =>X+2=-4
X=-9 X=-8 X=-7 X=-6
BÀI 2
\(\left(X-3\right).\left(X+2\right)=0\)
\(\Rightarrow X-3=X+2=O\)
\(TH1:X-3=0\)
X=3
TH2: X+2=0
X=-2
VẬY X=3 HOẶC X=-2
đề là dấu chia hết phải ko bạn
\(\frac{n+13}{n-2}\)=\(\frac{n-2+15}{n-2}\)=1+\(\frac{15}{n-2}\)
để n+13 \(⋮\) n-2 thì 15 \(⋮\) n-2
=)) n-2 \(\in\) Ư(15) ={\(\pm\)1 ; \(\pm\)3 ; \(\pm\)5 ; \(\pm\)15 }
+/ n-2 = -1 \(\Rightarrow\)n=1
+/ n-2 = 1 \(\Rightarrow\)n=3
+/ n-2 = -3 \(\Rightarrow\)n=-1
+/ n-2 =3 \(\Rightarrow\)n=5
+/ n-2 =-5 \(\Rightarrow\)n=-3
+/n-2=5 =)) n = 7
+/ n-2=-15 =)) n=-13
+/ n-2 = 15 =)) n=17
vậy với n={-13;-3;-1;1;3;5;7;17}
Bài 2:
a)|x| < 3
x\(\in\){-2;-1;0;1;2}
b)|x - 4 | < 3
x\(\in\){ 6 ; 5 ; 4 ; 3 ; 2 }
c) | x + 10 | < 2
x\(\in\){ -2 ; -10 }
Bài 1:
A = 1 + 2 - 3 + 4 + 5 - 6 +...+98 - 99
A = (1 + 4 + 7 +...+97) + [(2-3)+(5-6)+...+(98-99)]
A = 1617 + [(-1)+(-1)+...+(-1)]
A = 1617 + (-49)
A = +(1617-49) = A = 1568
B = - 2 - 4 + 6 - 8 + 10 + 12 - .... + 60
B =
2)
a) \(x\in\left\{2;1;0;-1;-2\right\}\)
b) \(x\in\left\{6;-6;5;-5;4\right\}\)
c) \(x\in\left\{-9;-11;-10\right\}\)
3)
\(\left(a;b\right)\in\left\{\left(0;1\right);\left(0;-1\right);\left(1;0\right);\left(-1;0\right)\right\}\)
\(A=\dfrac{x}{5x-2}=\dfrac{1}{5}\left(\dfrac{5x-2+2}{5x-2}\right)=\dfrac{1}{5}\left(\dfrac{5x-2}{5x-2}+\dfrac{2}{5x-2}\right)\)
\(A=\dfrac{1}{5}\left(1+\dfrac{2}{5x-2}\right)\)
A có giá trị nhỏ nhất khi \(\dfrac{2}{5x-2}\) nhỏ nhất
\(\Rightarrow5x-2\) là số nguyên âm nhỏ nhất
Do \(5x-2\) chia 5 dư -2, và \(-2\) là số nguyên âm nhỏ nhất thỏa mãn chia 5 dư -2
\(\Rightarrow5x-2=-2\)
\(\Rightarrow x=0\)