Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\dfrac{1}{x-1}+\dfrac{x}{x^3-1}.\dfrac{x^2+x+1}{x+1}\right):\dfrac{2x+1}{\left(x+1\right)^2}\)
\(=\left(\dfrac{1}{x-1}+\dfrac{x}{\left(x-1\right)\left(x^2+x+1\right)}.\dfrac{x^2+x+1}{x+1}\right):\dfrac{2x+1}{\left(x+1\right)^2}\)
\(=\left(\dfrac{1}{x-1}+\dfrac{x}{\left(x-1\right)\left(x+1\right)}\right):\dfrac{2x+1}{\left(x+1\right)^2}\)
\(=\left(\dfrac{x+1}{\left(x+1\right)\left(x-1\right)}+\dfrac{x}{\left(x+1\right)\left(x-1\right)}\right).\dfrac{\left(x+1\right)^2}{2x+1}\)
\(=\dfrac{2x+1}{\left(x+1\right)\left(x-1\right)}.\dfrac{\left(x+1\right)^2}{2x+1}\)
\(=\dfrac{x+1}{x-1}\)
Vậy \(A=\dfrac{x+1}{x-1}\)
Giả sử tìm được \(x\in Z\) để \(A\in Z\)
\(x\in Z\Leftrightarrow\left\{{}\begin{matrix}x+1\in Z\\x-1\in Z\end{matrix}\right.\)
\(A=\dfrac{x+1}{x-1}=\dfrac{x-1+2}{x-1}=1+\dfrac{2}{x-1}\)
\(\Leftrightarrow2⋮x-1\Leftrightarrow x-1\inƯ\left(2\right)\)
Ta có các trường hợp :
+) \(x-1=1\Leftrightarrow x=2\)
+) \(x-1=2\Leftrightarrow x=3\)
+) \(x-1=-1\Leftrightarrow x=0\)
+) \(x-1=-2\Leftrightarrow x=-1\)
Vậy..
a: Sửa đề: \(A=\dfrac{x^3+2x^2+6x+8}{x+1}\)
Để A là số nguyên thì \(x^3+x^2+x^2+x+5x+5+3⋮x+1\)
\(\Leftrightarrow x+1\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{0;-2;2;-4\right\}\)
b: Để \(\dfrac{2x^2+x-2}{x-3}\) là số nguyên thì \(2x^2-6x+7x-21+19⋮x-3\)
\(\Leftrightarrow x-3\in\left\{1;-1;19;-19\right\}\)
hay \(x\in\left\{4;2;22;-16\right\}\)
a: \(A=\dfrac{2x-5+x^2-4+x^2-9}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x^2+2x-18}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{2\left(x+3\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\dfrac{2x+6}{x-3}\)
b: Để A/2=x+3/x-3 là số nguyên thì \(x-3+6⋮x-3\)
=>\(x-3\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(x\in\left\{4;51;6;0;9;-3\right\}\)
c: Để A=1/x-1 thì \(\dfrac{2x+6}{x-3}=\dfrac{1}{x-1}\)
=>2x^2-2x+6x-6=x-3
=>2x^2+5x-6-x+3=0
=>2x^2+4x-3=0
hay \(x=\dfrac{-2\pm\sqrt{10}}{2}\)
\(=\left[\dfrac{2x-3}{\left(2x-5\right)\left(2x-1\right)}-\dfrac{3}{2x-1}-\dfrac{2\left(x-4\right)}{\left(x-4\right)\left(2x-5\right)}\right].\dfrac{2x\left(2x+3\right)-\left(2x+3\right)}{-2x\left(4x-7\right)-3\left(4x-7\right)}+1\)
\(=\left[\dfrac{2x-3-6x+15-4x+2}{\left(2x-5\right)}\right].\dfrac{2\left(x+\dfrac{3}{2}\right)}{\left(-2x-3\right)\left(4x-7\right)}+1\)
\(=\dfrac{-2\left(4x-7\right)}{2x-5}.\dfrac{2\left(x+\dfrac{3}{2}\right)}{\left(-2x-3\right)\left(4x-7\right)}+1\)
\(=\dfrac{1}{2x-5}.2+1\)
\(=\dfrac{2+2x-5}{2x-5}\)
\(=\dfrac{-3+2x}{2x-5}\)
Để P nguyên thì 2x-2+2 chia hết cho x-1
=>\(x-1\in\left\{1;-1;2;-2\right\}\)
=>\(x\in\left\{2;0;3;-1\right\}\)