Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{14-x}{4-x}=\frac{4-x+10}{4-x}=1+\frac{10}{4-x}\)
Để \(A\)có GTLN \(\Leftrightarrow\)4-x có GTNN, \(4-x>0\)và \(x\inℤ\)
\(\Rightarrow4-x=1\Rightarrow x=3\)
Vậy, A có GTLN là 11 khi x=3
Có \(A=\frac{14-x}{4-x}=\frac{4-x+10}{4-x}=1+\frac{10}{4-x}\)
Nếu A có GTLN \(\Rightarrow\)4-x có GTNN \(\Rightarrow\)4 - x > 0 ( x \(\inℤ\))
\(\Rightarrow\)4 - x = 1
\(\Leftrightarrow\)x = 3
Vậy A có GTLN là 11 nếu x = 3
ta có |x+3|>=0;|2y-14|>=0
=>|x+3|+|2y-14|>=0
=>S>=2016
dấu "=" xảy ra khi và chỉ khi (x+3)(2y-14)=0
=>x+3=0 và 2y-14=0
x=-3 và y=7
Vậy GTNN của S=2016 khi x=-3 và y=7
\(A=\frac{4+x}{x+3}=\frac{x+3+1}{x+3}=1+\frac{1}{x+3}\)(x\(\ne\)-3)
de A thuoc Z ma x thuoc Z \(\Leftrightarrow x+3\in\)Ư(3)={1;-1;3;-3}
ta co bang
x+3 | 1 | -1 | 3 | -3 |
x | -2(tm) | -4(tm) | 0(tm) | -6(tm) |
vay de A thuoc Z khi x \(\in\){-2;-4;0;-6}
co \(|^{ }_{ }x+1|^{ }_{ }\ge0\)voi moi x
\(\Rightarrow|^{ }_{ }x+1|^{ }_{ }-2\ge-2\)hay B \(\ge\)-2
dau "=" xay ra khi x+1=0\(\Leftrightarrow\)x=-1
vay voi x=-1 thi B dat gia tri nho nhat la -2
\(a)\) Ta có :
\(A=\frac{8n}{4n-3}=\frac{8n-6+6}{4n-3}=\frac{8n-6}{4n-3}+\frac{6}{4n-3}=\frac{2\left(4n-3\right)}{4n-3}+\frac{6}{4n-3}=2+\frac{6}{4n-3}\)
Để A có giá trị nguyên thì \(\frac{6}{4n-3}\) phải có giá trịn nguyên hay \(6⋮\left(4n-3\right)\)\(\Rightarrow\)\(\left(4n-3\right)\inƯ\left(6\right)\)
Mà \(Ư\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
Suy ra :
\(4n-3\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(3\) | \(-3\) | \(6\) | \(-6\) |
\(n\) | \(1\) | \(\frac{1}{2}\) | \(\frac{5}{4}\) | \(\frac{1}{4}\) | \(\frac{3}{2}\) | \(0\) | \(\frac{9}{4}\) | \(\frac{-3}{4}\) |
Vì \(n\inℤ\) nên \(n\left\{0;1\right\}\)
Vậy \(n\in\left\{0;1\right\}\) thì A có giá trị nguyên
Chúc bạn học tốt ~
\(b)\) Ta có :
\(A=\frac{8n}{4n-3}=2+\frac{6}{4n-3}\) ( câu a mình có phân tích rùi )
Để A đạt GTNN thì \(\frac{6}{4n-3}\) phải đạt GTNN hay \(4n-3< 0\) và đạt GTLN
\(\Rightarrow\)\(4n-3=-1\)
\(\Leftrightarrow\)\(4n=2\)
\(\Leftrightarrow\)\(n=\frac{1}{2}\) ( loại vì n là số nguyên )
\(\Rightarrow\)\(4n-3=-2\)
\(\Leftrightarrow\)\(4n=1\)
\(\Leftrightarrow\)\(\frac{1}{4}\)
\(\Rightarrow\)\(4n-3=-3\)
\(\Leftrightarrow\)\(4n=0\)
\(\Leftrightarrow\)\(n=0\)
Suy ra :
\(A=\frac{8n}{4n-3}=\frac{8.0}{4.0-3}=\frac{0}{0-3}=0\)
Vậy \(A_{min}=0\) khi \(n=0\)
Chúc bạn học tốt ~
Sửa đề: \(K=\dfrac{3x+7}{x-1}\)
\(K=\dfrac{3x+7}{x-1}=\dfrac{3x-3+10}{x-1}=3+\dfrac{10}{x-1}\)
Để K min thì \(\dfrac{10}{x-1}\) min
=>x-1=-1
=>x=0