Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2-2x+3 2x^3-9x^2+mx-15 2x-5 2x^3-4x^2+6x -5x^2+(m-6)x-15 -5x^2+10x-15 (m-16)x
Để đa thức 2x3-9x2+mx-15 chia hết cho đa thức x2-2x+3 thì \(\left(m-16\right)x=0\Rightarrow m-16=0\Rightarrow m=16\)
Vậy m = 16 thì đa thức 2x3-9x2+mx-15 chia hết cho đa thức x2-2x+3
2x^3-9x^2+mx-15 x^2-2x+3 2x+13 2x^3-4x^2+6x 13x^2+x(m-6)-15 13x^2-26x +39 x(m+20)-54
Đến đây làm sao nữa ta ?
x^2+5 x^4+2x^3+10x+a x^2+2x-5 x^4+5x^2 2x^3-5x^2+10x+a 2x^3 +10x -5x^2+a -5x^2-25 a+25
Để x4+2x3+10x+a chia hết cho đa thức x2+5 thì
\(a+25=0\Leftrightarrow a=-25\)
Đa thức \(x^2-1\)có nghiệm \(\Leftrightarrow x^2-1=0\)
\(\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\)
-1 và 1 là hai nghiệm của đa thức \(x^2-1\)
Để đa thức \(2x^3-x^2+ax+b\)chia hết cho đa thức \(x^2-1\)thì -1 và 1 cũng là hai nghiệm của đa thức \(2x^3-x^2+ax+b\)
Nếu x = -1 thì \(-2-1-a+b=0\Leftrightarrow a-b=-3\)(1)
Nếu x = 1 thì \(2-1+a+b=0\Leftrightarrow a+b=-1\)(2)
Từ (1) và (2) suy ra \(\hept{\begin{cases}a=\frac{-3-1}{2}=-2\\b=\frac{-1+3}{2}=1\end{cases}}\)
Vậy a = -2, b = 1
a: \(\Leftrightarrow x^3+2x^2-3x^2-6x+5x+10+a-10⋮x+2\)
=>a-10=0
=>a=10
b: \(\Leftrightarrow x^3+x^2+x+\left(a-1\right)x^2+\left(a-1\right)x+a-1+\left(2-a\right)x+b-a+1⋮x^2+x+1\)
=>2-a=0 và b-a+1=0
=>a=2; b=a-1=2-1=1
a) Cho x2 - x + 5=0 =>x={ \(\frac{1}{2}+\frac{\sqrt{19}}{2}i;\frac{1}{2}-\frac{\sqrt{19}}{2}i\) }
Thay giá trị của x là \(\frac{1}{2}+\frac{\sqrt{19}}{2}i\)hoặc \(\frac{1}{2}-\frac{\sqrt{19}}{2}i\) vừa tìm được vào x4 - x3 + 6x2- x sẽ luôn được kết quả là -5
=>-5 +a=0 => a=5
b) Cho x+2=0 => x=-2
Thay giá trị của x vào biểu thức 2x3 - 3x2 + x sẽ được kết quả là -30
=> -30 + a=0 => a=30
a) Cho 3n +1 =0 => n= \(\frac{-1}{3}\)
Thay n= \(\frac{-1}{3}\)vào biểu thức 3n3 + 10n2 -5 sẽ được kết quả -4
Vậy n = -4
b) Cho n-1=0 => n=1
Thay n=1 vào biểu thức 10n2 + n -10 sẽ được kết quả là 1
Vậy n = 1
a) \(\left(x^4-x^3+6x^2-x+a\right)⋮\left(x^2-x+5\right)=x^2+1\) (dư a - 5)
Để đa thức chia hết \(\Leftrightarrow a-5=0\Leftrightarrow a=5\)
b) \(\left(2x^3-3x^2+x+a\right)⋮\left(x+2\right)=2x^2-7x+15\) (dư a - 30)
Để đa thức chia hết \(\Leftrightarrow a-30=0\Leftrightarrow a=30\)
\(\frac{x^3+2x^2+15}{x+3}=\frac{\left(x^2-x+3\right)\left(x+3\right)+6}{x+3}=x^2-x+3+\frac{6}{x+3}\)( x khác -3)
Vậy để \(\left(x^3+2x^2+15\right)⋮\left(x+3\right)\)thì x+3 là Ư(6)
Kết luận
Ta có : \(x^3+2x^2+15=x^2\left(x+3\right)-x\left(x+3\right)+3\left(x+3\right)+6\)
\(=\left(x+3\right)\left(x^2-x+3\right)+6\)
Để đa thức(x3 +2x2+15)chia hết cho đa thức (x+3) thì \(6⋮\left(x+3\right)\Rightarrow x+3\inƯ\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
\(\Rightarrow x\in\left\{-2;-4;-1;-5;0;-6;3;-9\right\}\)
Vậy......