Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thực hiện phép chia đa thức ta có:
\(x^3-5x^2+9x-2=\left(x^2-2x+3\right)\left(x-3\right)+7\)
=> \(A=x^2-2x+3+\frac{7}{x-3}\)
Với x thuộc Z để A thuộc Z thì \(\frac{7}{x-3}\in Z\)<=> \(7⋮\left(x-3\right)\)<=> x-3 thuộc Ư(7). Em tự làm tiếp nhé!
điều kiện \(x\ge0\)và x khác 1/4
Q= \(\frac{3\sqrt{x}+2}{2\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+4}-\frac{x-6\sqrt{x}+5}{2x+7\sqrt{x}-4}=\frac{3x+14\sqrt{x}+8+2x-3\sqrt{x}+1-x+6\sqrt{x}-5}{2x+7\sqrt{x}-4}\)
=\(\frac{4x+17\sqrt{x}+4}{2x+7\sqrt{x}-4}\)
đề Q>1/2 thì \(\frac{4x+17\sqrt{x}+4}{2x+7\sqrt{x}-4}>\frac{1}{2}\)
<=> \(8x+34\sqrt{x}+8>2x+7\sqrt{x}-4\)<=> \(6x+27\sqrt{x}+12>0\) với mọi x>=0
vậy Q>1/2 khi x>=0 và x khác 1/4
a. \(P=\left(\frac{x^2+2x}{x^3+2x^2+5x+10}+\frac{4}{x^2+5}\right)\)\(.\frac{x^2+5}{x+1}\)
\(P=\left(\frac{x\left(x+2\right)}{\left(x+2\right)\left(x^2+5\right)}+\frac{4}{x^2+5}\right)\)\(.\frac{x^2+5}{x+1}\)
\(P=\left(\frac{x}{x^2+5}+\frac{4}{x^2+5}\right)\)\(.\frac{x^2+5}{x+1}\)
\(P=\frac{x+4}{x^2+5}.\frac{x^2+5}{x+1}\)\(=\frac{x+4}{x+1}\)
phần b em tự giải nhé chị chỉ giải đc đến đây thôi
a) P = (\(\frac{x\cdot\left(x+2\right)}{\left(x^2+5\right)\cdot\left(x+2\right)}+\frac{4}{x^2+5}\))*\(\frac{x^2+5}{x+1}\)=\(\frac{x+4}{x^2+5}\cdot\frac{x^2+5}{x+1}\)=\(\frac{x+4}{x+1}\) (ĐKXĐ: x\(x=\left\{-2;-1\right\}\)
b) TA CÓ : P= \(\frac{x+4}{x+1}=1+\frac{3}{x+1}\forall x\ne\left\{-2;-1\right\}\) . VẬY P \(\inℤ\) KHI \(\frac{3}{X+1}\) \(ℤ\in\) \(\Rightarrow x+1\)LÀ ƯỚC CỦA 3 \(\Rightarrow x=+1=\left\{-3;-1;1;3\right\}\Rightarrow x=\left\{-4;0;2\right\}\)
* x=-2 thì P=-4 (NHÂN),x=-1 thì P KO XÁC ĐỊNH
a) \(ĐKXĐ:x\ne4;x\ne9\)
b) \(A=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\frac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{-\sqrt{x}+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
c) Ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-3\right)+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\) (ĐK: x thuộc Z)
\(\sqrt{x}-3\) | 1 | -1 | 2 | -2 | 4 | -4 |
\(\sqrt{x}\) | 4 | 2 | 5 | 1 | 7 | -1 |
x | 2 | \(\sqrt{2}\) | \(\sqrt{5}\) | \(\sqrt{1}\) | \(\sqrt{7}\) | \(\varnothing\) |
Vậy để A thuộc Z khi x = {2;\(\sqrt{2};\sqrt{5};\sqrt{1};\sqrt{7}\) }
\(a,ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne\pm1\end{cases}}\)
Sao phân số thứ 2 là \(\frac{1-2}{1+x}\) .Bạn chép đề thật chuẩn mới trả lời đúng nhé
`P \in Z <=> (2\sqrtx-1) vdots (\sqrtx+1)`
`<=> [(2\sqrtx+1)-2] vdots (\sqrtx+1)`
`<=> (\sqrtx+1) \in {-2;2;-1;1}`
`<=> \sqrtx \in {-3;1;-2;0}`
`<=> x \in {1;0}`
.
ĐK: `x>=0`.
`P=(2\sqrtx-1)/(\sqrtx+1)=2-2/(\sqrtx+1)`
`x>=0`
`<=> \sqrtx>=0`
`<=> \sqrtx+1>=1`
`<=>2/(\sqrtx+1) <= 2`
`<=> -2/(\sqrtx+1) >= -2`
`<=> 2 - 2/(\sqrtx+1) >= 0`
`<=> P >=0`
Dấu "`=`" xảy ra `<=> x=0`
`P_(min)=0 <=> x=0`.
Đặt B=\(\frac{x-1}{x^2-5x+7}\)=>\(\frac{1}{B}\)=\(\frac{x^2-5x+7}{x-1}\)=\(x-4\)\(+\frac{3}{x-1}\)
Để B nguyên thì x-1 thuộc ư(3)={-3;-1;1;3}
Vậy để B thuộc Z thì x={-1;0;2;4)