K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2015

Ta có: |2x-4| > 0

=> |2x-4|+2015 > 2015

=> không có x để tổng trên có GTLN

1 tháng 5 2017

Đặt A = \(\frac{3x+4}{2x+1}=\frac{2\left(3x+4\right)}{2\left(2x+1\right)}=\frac{6x+8}{2\left(2x+1\right)}=\frac{6x+3+5}{2\left(2x+1\right)}=\frac{3\left(2x+1\right)+5}{2\left(2x+1\right)}=\frac{3}{2}+\frac{5}{2\left(2x+1\right)}\)

*Xét 2x + 1 < 0 => \(\frac{5}{2\left(2x+1\right)}< 0\)=>\(A>\frac{3}{2}\)

*Xét 2x + 1 > 0

Mà 2x + 1 \(\in\)Z (vì x \(\in\)Z) => \(2x+1\ge1\).Ta có: \(\frac{5}{2\left(2x+1\right)}\le\frac{5}{2}\)

\(\Rightarrow A\ge\frac{3}{2}+\frac{5}{2}=\frac{8}{2}=4\)

\(\Leftrightarrow A=4\Leftrightarrow2x+1=1\Leftrightarrow2x=0\Leftrightarrow x=0\)

Vậy GTNN của A = 1 tại x = 0 

1 tháng 5 2017

Sửa câu kết luận: vậy GTNN của A = 4 tại x = 0

7 tháng 4 2019

Đặt \(S=\frac{3x+4}{2x+1}=\frac{2\left(3x+8\right)}{2\left(2x+1\right)}=\frac{6x+8}{2\left(2x+1\right)}=\frac{6x+3+5}{2\left(2x+1\right)}=\frac{3\left(2x+1\right)+5}{2\left(2x+1\right)}=\frac{3}{2}+\frac{5}{2x+1}\)

Xét\(2x+1< 0\Rightarrow\frac{5}{2\left(2x+1\right)}< 0\Rightarrow A>\frac{3}{2}\)

Xét \(2x+1< 0\)

\(2x+1\in Z\)(vì \(x\in Z\))\(\Rightarrow2x+1\ge1\). Ta có:\(\frac{5}{2\left(2x+1\right)}< \frac{5}{2}\)

\(\Rightarrow A\ge\frac{3}{2}+\frac{5}{2}=\frac{8}{2}=4\)

\(\Rightarrow A=4\Leftrightarrow2x+1=1\Leftrightarrow2x=0\Leftrightarrow0\)

Vậy GTNN của A=4 khi x=0

13 tháng 1 2023

A = | x| + 2003 

|x| ≥ 0 ⇒ |x| + 2003 ≥ 2003  

A(min) = 2003 khi x = 0

8 tháng 12 2020

cho hàm số f(x) thỏa mãn 2f(x) - x. f(-x) = x+10. tính f(2)