Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để a là số nguyên thì x^2-4x-17 chia hết cho x+2
=>x^2+2x-6x-12-5 chia hết cho x+2
=>-5 chia hết cho x+2
=>x+2 thuộc {1;-1;5;-5}
=>x thuộc {-1;-3;3;-7}
a: Khi x=6 thì \(A=\dfrac{4}{6-3}=\dfrac{4}{3}\)
b: \(B=\dfrac{4x}{x^2-9}-\dfrac{x-3}{x+3}\)(ĐKXĐ: \(x\notin\left\{3;-3\right\}\))
\(=\dfrac{4x}{\left(x-3\right)\left(x+3\right)}-\dfrac{x-3}{x+3}\)
\(=\dfrac{4x-\left(x-3\right)^2}{\left(x+3\right)\left(x-3\right)}\)
\(=\dfrac{4x-x^2+6x-9}{\left(x+3\right)\left(x-3\right)}=\dfrac{-x^2+10x-9}{\left(x+3\right)\left(x-3\right)}\)
ĐKXĐ: x>=0
Để P là số nguyên thì \(\sqrt{x}+2⋮\sqrt{x}+1\)
=>\(\sqrt{x}+1+1⋮\sqrt{x}+1\)
=>\(\sqrt{x}+1\inƯ\left(1\right)\)
=>\(\sqrt{x}+1=1\) hoặc \(\sqrt{x}+1=-1\)
=>x=0(nhận) hoặc \(\sqrt{x}=-2\)(loại)
\(P=\dfrac{\sqrt{x}+1+1}{\sqrt{x}+1}=1+\dfrac{1}{\sqrt{x}+1}\)
\(\sqrt{x}+1>=1\)
=>\(\dfrac{1}{\sqrt{x}+1}< =1\)
=>\(\dfrac{1}{\sqrt{x}+1}+1< =2\)
=>P<=2 với mọi x thỏa mãn ĐKXĐ
Dấu = xảy ra khi x=0
Để A là số nguyên dương thì \(\left\{{}\begin{matrix}3\sqrt{x}+6-7⋮\sqrt{x}+2\\x>\dfrac{1}{9}\end{matrix}\right.\Leftrightarrow\sqrt{x}+2=7\)
hay x=25
\(a,A=\dfrac{2\sqrt{x}-2+2\sqrt{x}+x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}\left(x\ge0;x\ne1;x\ne9\right)\\ A=\dfrac{x+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)
\(b,A\in Z\Leftrightarrow\dfrac{\sqrt{x}-3+5}{\sqrt{x}-3}\in Z\Leftrightarrow1+\dfrac{5}{\sqrt{x}-3}\in Z\\ \Leftrightarrow\sqrt{x}-3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ Mà.x\ge0\\ \Leftrightarrow\sqrt{x}\in\left\{2;4;8\right\}\\ \Leftrightarrow x\in\left\{4;16;64\right\}\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\\x\ne1\end{matrix}\right.\)
\(A=\dfrac{2\sqrt{x}-2+2\sqrt{x}+x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}=\dfrac{x+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)
b) \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}=1+\dfrac{5}{\sqrt{x}-3}\in Z\)
\(\Rightarrow\sqrt{x}-3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Kết hợp đk
\(\Rightarrow x\in\left\{4;16;64\right\}\)
Lời giải:
Để $\frac{2}{A}$ dương thì $A$ dương
$\Leftrightarrow \sqrt{x}>1 \Leftrightarrow x>1$
\(\frac{2}{A}=\frac{2(\sqrt{x}+1)}{\sqrt{x}-1}=\frac{2(\sqrt{x}-1)+4}{\sqrt{x}-1}=2+\frac{4}{\sqrt{x}-1}\)
Để $A$ nhận giá trị nguyên dương lớn nhất thì $\sqrt{x}-1$ phải nhận giá trị nguyên dương nhỏ nhất.
Với $x>1$ thì $\sqrt{x}-1$ nguyên dương nhỏ nhất bằng $1$
$\Lefrightarrow \sqrt{x}=2$
$\Leftrightarrow x=4$
Vậy $x=4$ thì $\frac{2}{A}$ nhận giá trị nguyên dương lớn nhất.